Listeria monocytogenes continues to be a major cause of class I food recalls in the United States. Very little is known about its transfer and cross-contamination in processing scenarios. The objective of this study was to evaluate the effect of hydration level on L. monocytogenes biofilms grown on stainless steel and its effect on the biofilm transfer to foods. Biofilms were grown on stainless steel in diluted tryptic soy broth 1:20 for 48 h at 32 degrees C. After this, biofilms were equilibrated over saturated salt solutions at 20 degrees C for 24 h (94, 75, 58, and 33% relative humidity; % RH) prior to transferring. Transfer experiments were conducted from inoculated stainless steel to bologna and hard salami at a constant pressure (45 kPa) and time (30 s) with a universal testing machine. The experiment was designed with a factorial design 4 x 2 (biofilms equilibrated at 4% RH and two foods) and duplicated every day, and the whole experiment was repeated nine times. The results were analyzed with an analysis of variance by SAS Statistical Analysis Software. Our results showed that more bacteria were transferred to bologna (mean efficiency of transfer [EOT] = 3.0) than to hard salami (mean EOT = 0.35, P < 0.01). As biofilms became drier, the transfer of Listeria from stainless steel to both foods increased (P < 0.05). The EOT increased from 2 to 3.8 and from 0.2 to 0.51 upon transfer when drying the biofilm for bologna and hard salami, respectively. This study may be an indication that as biofilms were dried, the cell-cell and cell-surface interactions became weaker, and bacterial transfer increased. This phenomenon was enhanced in foods containing higher water activity levels. We hypothesize that this increased in transfer was due to the presence of capillary forces in the food.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028x-70.11.2480 | DOI Listing |
Int J Paediatr Dent
January 2025
Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
Background: The growing demand for esthetic restorative materials highlights the need to evaluate their marginal accuracy and fracture resistance to ensure optimal clinical outcomes for primary molars.
Aim: The aim was to assess the vertical marginal gap distance and fracture resistance of esthetic restorative materials after cyclic loading.
Design: Forty extracted primary molars were randomly divided into four groups: Group I, stainless steel veneered crowns with tooth-colored material; Group II, prefabricated monolithic zirconia crowns; Group III, yttria-partially stabilized zirconia computer-aided design/computer-aided manufacturing (CAD/CAM) crowns; and Group IV, hybrid ceramic CAD/CAM crowns.
J Funct Biomater
January 2025
Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
Antibacterial stainless steels have been widely used in biomedicine, food, and water treatment. However, the current antibacterial stainless steels face challenges in balancing corrosion resistance and antibacterial effectiveness, limiting their application range and lifespan. In this study, an oxide layer sealed with antibacterial Ag particles was constructed on the surface of 304 stainless steel through anodizing and electrodeposition, and the process parameters were optimized for achieving long-term antibacterial properties.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Orthodontics and Dentofacial Orthopaedics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karanataka, 576104, India.
Objectives: Good oral hygiene measures are important for successful orthodontic treatment. They involve various types of mouthwashes which have been reported to cause alteration of mechanical properties of archwires. This study aimed to evaluate the effects of a new kind of chlorine-dioxide-containing mouthwash on the mechanical properties and surface morphology of stainless steel orthodontic archwires against the already prevalent chlorhexidine mouthwash in the market.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
Per- and polyfluoroalkyl substances (PFAS)-containing firefighting foam have been used in stationary fire suppression systems for several decades. However, there is a lack of research on how to decontaminate PFAS-contaminated infrastructure and evaluate treatment efficiency. This study assessed the removal of PFAS from stainless steel pipe surfaces using different cleaning agents (tap water, methanol, and aqueous solutions containing 10 and 20 wt % of butyl carbitol (BC)) at different temperatures (20 °C, 40 °C, and 70 °C).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Shandong Ocean Pipe Technology Co., Ltd, Dezhou 253300, China.
Polymeric coatings that combine resistance to adhesion ("defending") and killing ("attacking") of biocontaminants were proposed to endow the surface with nonadhesive and bactericidal capabilities. In contrast, a zwitterionic copolymer P(GMA--DMAPS) with antifouling groups ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, DMAPS) and a zwitterionic/cationic copolymer P(GMA--DMAPS--DMC) with bactericidal groups ([2-(methacryloyloxy)ethyl]trimethylammonium chloride, DMC) were synthesized, of which the latter exhibited synergistic inhibitory and killing properties. The distinct feed ratios of monomers were conducted, and the optimal molar ratio was obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!