The carbonylation of methanol to acetic acid is a hugely important catalytic process, and there are considerable cost and environmental advantages if a process could be designed that was tolerant of hydrogen impurities in the CO feed gas, while eliminating by-products such as propionic acid and acetaldehyde altogether. This paper reports on an investigation into the application of rhodium complexes of several C(4) bridged diphosphines, namely BINAP, 1,4-bis(diphenylphosphino)butane (dppb), bis(diphenylphosphino)xylene (dppx) and 1,4-bis(dicyclohexylphosphino)butane (dcpb) as catalysts for hydrogen tolerant methanol carbonylation. An investigation into the structure, reactivity and stability of pre-catalysts and catalyst resting states of these complexes has also been carried out in order to understand the observations in catalysis. Rh(I) carbonyl halide complexes of each of the ligands have been prepared from both [Rh(2)(CO)(4)Cl(2)] and dimeric mu-Cl-[Rh(L)Cl](2) complexes. These Rh(I) carbonyl complexes are either dimeric with bridging phosphine ligands (dppb, dcpb, dppx) or monomeric chelate complexes. The reaction of the complexes with methyl iodide at 140 degrees C has been studied, which has revealed clear differences in the stability of the corresponding Rh(III) complexes. Surprisingly, the dimeric Rh(I) carbonyls react cleanly with MeI with rearrangement of the diphosphine to a chelate co-ordination mode to give stable Rh(III) acetyl complexes. The Rh acetyls for L=dppb and dppx have been fully characterised by X-ray crystallography. During the catalytic studies, the more rigid dppx and BINAP ligands were found to be nearly 5 times more hydrogen tolerant than [Rh(CO)(2)I(2)](-), as revealed by by-product analysis. The origin of this hydrogen tolerance is explained based on the differing reactivities of the Rh acetyls with hydrogen gas, and by considering the structure of the complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b712974b | DOI Listing |
S Afr J Surg
December 2024
Department of Surgical Sciences, Nelson R Mandela School of Clinical Medicine, University of KwaZulu-Natal, South Africa.
Background: KwaZulu-Natal bears a significant trauma burden, with polytrauma patients often experiencing traumatic limb amputations. This study investigates traumatic limb amputations in the subgroup of severely injured polytrauma patients admitted to the trauma ICU in KwaZulu-Natal. This study aims to describe the management and outcomes of traumatic limb amputations in polytrauma patients at the trauma ICU.
View Article and Find Full Text PDFInt Clin Psychopharmacol
March 2025
Department of Neuroscience, University Psychiatric Center, Catholic University of Leuven, Psychiatry Research Group, Leuven, Belgium.
This study evaluates the impact of neuroscience-based nomenclature (NbN) training on psychiatric residents in Flanders, Belgium. Addressing Zemach et al.'s findings on NbN's potential, we investigated its application in clinical practice.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.
Pluripotent Stem Cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, while different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here we investigated how the actin cytoskeleton is regulated in different pluripotency states.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Chemistry, Siddhachalam Laboratory, Raipur, 493221, Chhattisgarh, India.
Objectives: The primary objective of this review is to provide updated mechanisms that regulate ferroptosis sensitivity in cancer cells and recent advancements in drug targeting for ferroptosis as an antitumor therapy.
Methods: To achieve these objectives, a comprehensive literature review was conducted, analyzing recent studies on ferroptosis, including its cellular, molecular, and gene-level characteristics. The review involved an evaluation of advancements in ferroptosis drug research across various medical domains, with particular attention to novel therapeutic approaches in nano-medicine, TCM, and Western medicine.
Microrna
January 2025
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 20130, India.
MicroRNA (miRNA) modulation has emerged as a promising strategy in cancer immunotherapy, particularly in converting "cold" tumors with limited immune cell infiltration into "hot" tumors responsive to immunotherapy. miRNAs regulate immune cell recruitment and activation within the tumor microenvironment, influencing tumor behavior targeting specific miRNAs in cold tumors aims to enhance the immune response, potentially improving therapeutic efficacy. Despite ongoing research challenges, such as tumor complexity and treatment resistance, miRNA-based therapies offer personalized approaches with potential ethical considerations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!