Background: In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2) is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function.
Principal Findings: We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools.
Conclusions: Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077933 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001238 | PLOS |
Cell Mol Life Sci
December 2024
National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease with high mortality. CD38 is a main enzyme for intracellular nicotinamide adenine dinucleotide (NAD) degradation in mammals. It has been reported that CD38 participated in pulmonary fibrosis through promoting alveolar epithelial cells senescence.
View Article and Find Full Text PDFMatrix Biol
December 2024
Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL). Electronic address:
The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies.
View Article and Find Full Text PDFFree Radic Res
December 2024
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
Patients with hypoxemia require high-concentration oxygen therapy. However, prolonged exposure to oxygen concentrations 21% higher than physiological concentrations (hyperoxia) may cause oxidative cellular damage. Pulmonary alveolar epithelial cells are major targets for hyperoxia-induced oxidative stress.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Sanford Consortium for Regenerative Medicine; Sanford Burnham Prebys Medical Discovery Institute; Department of Pediatrics, University of California, San Diego School of Medicine;
Human lung tissue is composed of an interconnected network of epithelium, mesenchyme, endothelium, and immune cells from the upper airway of the nasopharynx to the smallest alveolar sac. Interactions between these cells are crucial in lung development and disease, acting as a barrier against harmful chemicals and pathogens. Current in vitro co-culture models utilize immortalized cell lines with different biological backgrounds, which may not accurately represent the cellular milieu or interactions of the lung.
View Article and Find Full Text PDFHum Exp Toxicol
December 2024
Department of Respiration, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.
Objective: Sulfur mustard (SM) is an important chemical warfare agent. The mechanisms underlying SM toxicity have not been completely elucidated. However, oxidative stress and the subsequent damage to macromolecules have been considered ascrucial steps in SM toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!