Protein synthesis in the chloroplast is carried out by chloroplast ribosomes (chloro-ribosome) and regulated in a light-dependent manner. Chloroplast or plastid ribosomal proteins (PRPs) generally are larger than their bacterial counterparts, and chloro-ribosomes contain additional plastid-specific ribosomal proteins (PSRPs); however, it is unclear to what extent these proteins play structural or regulatory roles during translation. We have obtained a three-dimensional cryo-EM map of the spinach 70S chloro-ribosome, revealing the overall structural organization to be similar to bacterial ribosomes. Fitting of the conserved portions of the x-ray crystallographic structure of the bacterial 70S ribosome into our cryo-EM map of the chloro-ribosome reveals the positions of PRP extensions and the locations of the PSRPs. Surprisingly, PSRP1 binds in the decoding region of the small (30S) ribosomal subunit, in a manner that would preclude the binding of messenger and transfer RNAs to the ribosome, suggesting that PSRP1 is a translation factor rather than a ribosomal protein. PSRP2 and PSRP3 appear to structurally compensate for missing segments of the 16S rRNA within the 30S subunit, whereas PSRP4 occupies a position buried within the head of the 30S subunit. One of the two PSRPs in the large (50S) ribosomal subunit lies near the tRNA exit site. Furthermore, we find a mass of density corresponding to chloro-ribosome recycling factor; domain II of this factor appears to interact with the flexible C-terminal domain of PSRP1. Our study provides evolutionary insights into the structural and functional roles that the PSRPs play during protein synthesis in chloroplasts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2148287 | PMC |
http://dx.doi.org/10.1073/pnas.0709856104 | DOI Listing |
J Cell Mol Med
January 2025
Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
Human L35a ribosomal protein (RPL35A) has been reported to confer higher drug resistance and viability to triple-negative breast cancer (TNBC) cells, but the mechanism related to its promotion of TNBC malignant progression is still unclear. Here, we found that silencing of RPL35A could inhibit the proliferation of TNBC cells by suppressing the G1/S phase transition. Furthermore, SMAD-specific E3 ubiquitin protein ligase 2 (Smurf2) was found to be a potential upstream ubiquitin ligase of RPL35A.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFThe increasing availability of microbial genomes is essential to gain insights into microbial ecology and evolution that can propel biotechnological and biomedical advances. Recent advances in genome recovery have significantly expanded the catalogue of microbial genomes from diverse habitats. However, the ability to explain how well a set of genomes account for the diversity in a given environment remains challenging for individual studies or biome-specific databases.
View Article and Find Full Text PDFelements are primate-specific retrotransposon sequences that comprise ∼11% of human genomic DNA. sequences contain an internal RNA polymerase III promoter and the resultant RNA transcripts mobilize by a replicative process termed retrotransposition. retrotransposition requires the Long INterspersed Element-1 (LINE-1) open reading frame 2-encoded protein (ORF2p).
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy.
NOC1, NOC2, and NOC3 are conserved nucleolar proteins essential for regulating ribosomal RNA (rRNA) maturation, a process critical for cellular homeostasis. NOC1, in and yeast, enhances nucleolar activity to sustain rRNA processing, whereas its depletion leads to impaired polysome formation, reduced protein synthesis, and apoptosis. These genes have vertebrate homologs called CEBPZ, NOC2L, and NOC3l.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!