The genome of the social amoeba Dictyostelium discoideum encodes approximately 285 kinases, which represents approximately 2.6% of the total genome and suggests a signaling complexity similar to that of yeasts and humans. The behavior of D. discoideum as an amoeba and during development relies heavily on fast rearrangements of the actin cytoskeleton. Here, we describe the knockout phenotype of the svkA gene encoding severin kinase, a homolog of the human MST3, MST4 and YSK1 kinases. SvkA-knockout cells show drastic defects in cytokinesis, development and directed slug movement. The defect in cytokinesis is most prominent, leading to multinucleated cells sometimes with >30 nuclei. The defect arises from the frequent inability of svkA-knockout cells to maintain symmetry during formation of the cleavage furrow and to sever the last cytosolic connection. We demonstrate that GFP-SvkA is enriched at the centrosome and localizes to the midzone during the final stage of cell division. This distribution is mediated by the C-terminal half of the kinase, whereas a rescue of the phenotypic changes requires the active N-terminal kinase domain as well. The data suggest that SvkA is part of a regulatory pathway from the centrosome to the midzone, thus regulating the completion of cell division.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.012179 | DOI Listing |
Mol Cell
December 2024
Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:
Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
Dictyostelids represent a crucial element in the protist community, and their abundant presence in Jilin Province underscores their indispensable role in biodiversity conservation. In the present study, a resource survey of dictyostelids used random sampling to collect 28 soil samples from five localities in Changbai Korean Autonomous County, Jilin Province. In addition, a compilation of dictyostelid species reported from Jilin Province was developed, based on a thorough review of the literature.
View Article and Find Full Text PDFDev Cell
December 2024
Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK. Electronic address:
Oscillatory phenomena play widespread roles in the control of biological systems. In D. discoideum, oscillatory cyclic adenosine monophosphate (cAMP) signaling drives collective behavior and induces a temporal developmental gene expression program.
View Article and Find Full Text PDFElife
December 2024
Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Cell migration towards stiff substrates has been coined as durotaxis and implicated in development, wound healing, and cancer, where complex interplays between immune and non-immune cells are present. Compared to the emerging mechanisms underlying the strongly adhesive mesenchymal durotaxis, little is known about whether immune cells - migrating in amoeboid mode - could follow mechanical cues. Here, we develop an imaging-based confined migration device with a stiffness gradient.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
Small GTPases of the Rho family play a central role in the regulation of cell motility by controlling the remodeling of the actin cytoskeleton. In the amoeboid cells of Dictyostelium discoideum, the active form of the Rho GTPase Rac1 regulates actin polymerases at the leading edge and actin filament bundling proteins at the posterior cortex of polarized cells. We monitored the spatiotemporal dynamics of Rac1 and its effector DGAP1 in vegetative amoebae using specific fluorescent probes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!