In animals and yeast, CLASP proteins are microtubule plus-end tracking proteins (+TIPS) involved in the regulation of microtubule plus-end dynamics and stabilization. Here we show that mutations in the Arabidopsis CLASP homolog result in various plant growth reductions, cell form defects and reduced mitotic activity. Analysis of Arabidopsis plants that carry a YFP:AtCLASP fusion construct regulated by the AtCLASP native promoter showed similarities to the described localization of the animal CLASP proteins, but also prominent differences including punctate and preferential localization along cortical microtubules. Colocalization studies of YFP:AtCLASP and CFP:EB1b also showed that AtCLASP is enriched at the plus ends of microtubules where it localizes behind the AtEB1b protein. Moreover, AtCLASP overexpression causes abnormal cortical microtubule bundling and array organization. Cortical microtubule arrays have evolved to be prominent in plants, and our findings suggest that plant CLASP proteins may have adopted specific functions in regulating cortical microtubule properties and cell growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.024950 | DOI Listing |
Mol Plant
December 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. Electronic address:
In eukaryotic cells, autophagosomes are double-membrane vesicles that are highly mobile and traffic along cytoskeletal tracks. While core autophagy-related proteins (ATGs) and other regulators involved in autophagosome biogenesis in plants have been extensively studied, the specific components regulating plant autophagosome motility remain elusive. In this study, using TurboID-based proximity labelling, we identify the retromer subcomplex comprising sorting nexin 1 (SNX1), SNX2a, and SNX2b as interacting partners of ATG8.
View Article and Find Full Text PDFCell Insight
February 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
Tumor suppressor protein Adenomatous polyposis coli protein (APC) is an EB-binding and microtubule (MT) plus end-tracking protein; however, how exactly APC regulates MT dynamics remains elusive. Here, we show that in LLC-PK1 cells, APC and KIF2A, an MT depolymerase, form a complex clustering at the cell edge and destabilize MTs at the MT plus ends. Further biochemical characterization and mutational analysis reveal key residues for the APC-KIF2A interaction.
View Article and Find Full Text PDFCurr Biol
September 2024
Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czechia. Electronic address:
Microtubules (MTs) are dynamically unstable polar biopolymers switching between periods of polymerization and depolymerization, with the switch from the polymerization to the depolymerization phase termed catastrophe and the reverse transition termed rescue. In presence of MT-crosslinking proteins, MTs form parallel or anti-parallel overlaps and self-assemble reversibly into complex networks, such as the mitotic spindle. Differential regulation of MT dynamics in parallel and anti-parallel overlaps is critical for the self-assembly of these networks.
View Article and Find Full Text PDFCurr Biol
August 2024
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, The Netherlands. Electronic address:
Cell migration through complex 3D environments relies on the interplay between actin and microtubules. A new study shows that, when cells pass through narrow constrictions, CLASP-dependent microtubule stabilisation at the cell rear controls actomyosin contractility to enable nuclear translocation and preserve cell integrity.
View Article and Find Full Text PDFNat Commun
August 2024
School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
Microtubule organization in cells relies on targeting mechanisms. Cytoplasmic linker proteins (CLIPs) and CLIP-associated proteins (CLASPs) are key regulators of microtubule organization, yet the underlying mechanisms remain elusive. Here, we reveal that the C-terminal domain of CLASP2 interacts with a common motif found in several CLASP-binding proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!