Antimanic therapies target brain arachidonic acid signaling: lessons learned about the regulation of brain fatty acid metabolism.

Prostaglandins Leukot Essent Fatty Acids

Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.

Published: April 2008

Bipolar disorder is a major medical, social and economic burden worldwide. However, the biochemical basis of the disorder and the mechanisms of action of effective antibipolar disorder drugs remain elusive. In this paper, we review how combining a kinetic approach to studying the turnover of fatty acids within brain phospholipids of unanesthetized rats along with chronic administration of antimanic drugs (lithium, valproate and carbamazepine) at therapeutically relevant doses, shows that the brain arachidonic acid cascade is a common target of these drugs. The overlapping effects of the three drugs are decreased turnover of arachidonic acid but not of docosahexaenoic acid in rat brain phospholipids, and decreased brain cyclooxygenase-2 and prostaglandin E(2). Whereas lithium and carbamazepine target the transcription of the arachidonic acid-selective calcium-dependent cytosolic phospholipase A(2), valproate is a non-competitive inhibitor of an arachidonic acid-selective acyl-CoA synthetase. Two potential models of bipolar disorder, chronic N-methyl-d-aspartate and n-3 polyunsaturated fatty acid deprivation, opposite to the antimanic drugs, increase the turnover and markers of the arachidonic acid cascade in rat brain. These observations support the hypothesis proposed by Rapoport and colleagues that the arachidonic acid cascade is a common target of mood stabilizers and that by targeting substrate-specific enzymes the turnover of individual fatty acids can be regulated within the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plefa.2007.10.018DOI Listing

Publication Analysis

Top Keywords

arachidonic acid
20
acid cascade
12
brain
8
brain arachidonic
8
acid
8
fatty acid
8
bipolar disorder
8
fatty acids
8
brain phospholipids
8
antimanic drugs
8

Similar Publications

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD.

View Article and Find Full Text PDF

Weaning is essential for foal growth and development. We determined the intestinal flora structure of donkey foals at the end of weaning (PreW_4d) and three stages after weaning (PostW_4d, PostW_8d, and PostW_15d) to explore the effects of weaning on intestinal development of donkey foals. The results showed that the main microbial flora in the gut of the donkey foal were Firmicutes and Bacteroides, and the proportion of Firmicutes gradually increased with weaning, which was an important reflection of the donkey foal's adaptability to the transition from lactose liquid feed to plant fiber solid feed.

View Article and Find Full Text PDF

Prenatal sonographic diagnosis of congenital heart disease (CHD) can lead to improved morbidity and mortality. However, the diagnostic accuracy of ultrasound, the sole prenatal screening tool, remains limited. Failed prenatal or early newborn detection of cyanotic CHD (CCHD) can have disastrous consequences.

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short- to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase (FADS1), delta-6 desaturase (FADS2), and elongase (ELOVL2) on changes in RBC and plasma biomarkers.

View Article and Find Full Text PDF

Therapeutic Potential of Vanillic Acid in Ulcerative Colitis Through Microbiota and Macrophage Modulation.

Mol Nutr Food Res

January 2025

2nd Abdominal Surgery Department, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China.

This study investigated the protective effects of the dietary polyphenol vanillic acid (VA) on dextran sulfate sodium-induced acute ulcerative colitis (UC) in mice, focusing on its impact on the gut microbiota and inflammatory responses. VA was supplemented following dextran sulfate sodium administration, and key indicators, including body weight, disease activity index, colon length, spleen index, and inflammatory markers, were assessed. VA supplementation significantly alleviated UC symptoms, preserved intestinal barrier integrity, and reduced pro-inflammatory cytokine levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!