Classification of dynamic vibronic couplings in vibrational real-time spectra of a thiophene derivative by few-cycle pulses.

J Phys Chem A

Department of Applied Physics and Chemistry and Insititute of Laser Science, University of Electro-communications, Chofugaoka 1-5-1, Chofu, Tokyo, 182-8585 Japan.

Published: December 2007

AI Article Synopsis

  • Pump-probe spectroscopy was conducted using ultra-short 6.7 fs pulses to study vibrational effects on electronic transitions in a quinoid thiophene molecule.
  • The analysis focused on how molecular vibration affects electronic transition probabilities through vibronic coupling, monitoring changes in spectral features like peak frequency and intensity.
  • The modulation mechanisms were categorized into Condon and non-Condon types, with wave packet motions distinguished by different derivative orders related to potential changes during vibronic transitions.

Article Abstract

Pump-probe spectroscopy was performed with a few cycle pulses of 6.7 fs duration. The electronic transition intensity modulation was induced by molecular vibration in a quinoid thiophene molecule in solution. The real-time vibrational features were analyzed in terms of dependence of vibrational amplitude and phase on probe photon energy. The electronic transition probability is modulated by molecular vibration via vibronic coupling. Changes in the spectral shape and intensity of the time-resolved spectrum were studied by tracking characteristic spectral features including the peak frequency and intensity, spectral bandwidth, and band-integrated intensity. From the analysis the modulation mechanisms were classified into two groups: (1) Condon type and (2) non-Condon type. The features of the wave packet motions were also classified into zeroth-order derivatives due to quasi-pure non-Condon type and first- and second-order derivative types due to the displacement of the potential minimum and the potential curvature change associated with the relevant vibronic transition, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp076750dDOI Listing

Publication Analysis

Top Keywords

electronic transition
8
molecular vibration
8
non-condon type
8
classification dynamic
4
dynamic vibronic
4
vibronic couplings
4
couplings vibrational
4
vibrational real-time
4
real-time spectra
4
spectra thiophene
4

Similar Publications

Broadband terahertz holography using isotropic VO metasurfaces.

Sci Rep

January 2025

School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.

Vanadium dioxide (VO) exhibits exceptional phase transition characteristics that enable dynamic manipulation of electromagnetic wave. In this study, a novel design of bilayer isotropic metasurface is introduced. It leverages insulating-to-metallic phase transition of VO to enable broadband holography for terahertz wave.

View Article and Find Full Text PDF

The Selective Metallization Technique shows promise for roll-to-roll in-line patterning of flexible electronics using evaporated metals, but challenges arise when applied to sputtering functional materials. This study overcomes these challenges with simultaneous sputtering of Bi-Sb-Te and evaporation of metal (Ag or Cu) for thermoelectric layers when using Selective Metallization Technique. Large-scale manufacturing is demonstrated through roll-to-roll processing of a 0.

View Article and Find Full Text PDF

Transition from multi-year La Niña to strong El Niño rare but increased under global warming.

Sci Bull (Beijing)

December 2024

NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.

El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.

View Article and Find Full Text PDF

Novel smart materials with high curie temperatures: EuDyGeO, EuLaGeO and EuHoGeO.

Appl Radiat Isot

December 2024

Department of Metallurgy and Materials Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey.

The EuDyGeO, EuLaGeO and EuHoGeO powder were obtained through a solid-state reaction method via multistep firing of stoichiometric ratios of EuO, GeO, DyO, LaO and HoO in open atmosphere at temperatures from 800 to 1150 °C. The thermal behaviour, phase formation, SEM/EDX analysis, photoluminescence properties, Curie tempereture, dielectric and piezoelectric properties of the samples were investigated by TG/DTA, XRD, SEM, PL, TG/DTA, LCR-meter and d-meter, respectively. The germenates having triclinic crystal system have D→F, D→F, D→F, D→F transitions of Eu ions.

View Article and Find Full Text PDF

Objective: Interleukin-17 E (IL-17E) is a pro-inflammatory cytokine that participates in the inflammatory response and tumorigenesis. However, the function of IL-17E in non-small cell lung cancer (NSCLC) remains largely unknown.

Methods: The clinical value of IL-17E was determined by immunohistochemistry (IHC) in 75 cases of NSCLC tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!