Specific antibodies interfere with the function of human tumor-associated carbonic anhydrase IX (CA IX), and show potential as tools for anticancer interventions. In this work, a correlation between structural elements and thermodynamic parameters of the association of antibody fragment Fab M75 to a peptide corresponding to its epitope in the proteoglycan-like domain of CA IX, is presented. Comparisons of the crystal structures of free Fab M75 and its complex with the epitope peptide reveal major readjustments of CDR-H1 and CDR-H3. In contrast, the overall conformations and positions of CDR-H2 and CDR-L2 remain unaltered, and their positively charged residues may thus present a fixed frame for epitope recognition. Adoption of the altered CDR-H3 conformation in the structure of the complex is accompanied by an apparent local stabilization. Analysis of domain mobility with translation-libration-screw (TLS) method shows that librations of the entire heavy chain variable domain (V(H)) decrease and reorient in the complex, which correlates well with participation of the heavy chain in ligand binding. Isothermal titration microcalorimetry (ITC) experiments revealed a highly unfavorable entropy term, which can be attributed mainly to the decrease in the degrees of freedom of the system, the loss of conformational freedom of peptide and partially to a local stabilization of CDR-H3. Moreover, it was observed that one proton is transferred from the environment to the protein-ligand complex upon binding. Molecular dynamics simulations followed by molecular mechanics/generalized Born surface area (MM-GBSA) calculations of the ligand (epitope peptide) binding energy yielded energy values that were in agreement with the ITC measurements and indicated that the charged residues play crucial role in the epitope binding. Theoretical arguments presented in this work indicate that two adjacent arginine residues (ArgH50 and ArgH52) are responsible for the observed proton transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.21821 | DOI Listing |
Alzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: The Neurovascular Unit is a multicellular structure of the CNS known to become dysfunctional in Alzheimer's Disease (AD) and cerebral amyloid angiopathy. Amyloidosis disrupts the function of cerebrovascular endothelial cells (cECs) via extrinsic and intrinsic apoptosis, and induction of blood brain barrier (BBB) permeability. Findings in our lab demonstrated that pan-Carbonic Anhydrase inhibitors (CAi's) prevent mitochondria-mediated apoptotic mechanisms in cECs.
View Article and Find Full Text PDFMol Pharm
January 2025
School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland.
Glaucoma is a vision-threatening disease that is currently treated with intraocular-pressure-reducing eyedrops that are instilled once or multiple times daily. Unfortunately, the treatment is associated with low patient adherence and suboptimal treatment outcomes. We developed carbonic anhydrase II inhibitors (CAI-II) for a prolonged reduction of intraocular pressure (IOP).
View Article and Find Full Text PDFJACC Heart Fail
January 2025
Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA; Baylor Scott and White Research Institute, Baylor Scott and White Health, Dallas, Texas, USA. Electronic address:
Several trials have evaluated diuretic-based strategies to improve symptoms and outcomes in patients with acute heart failure (AHF). The authors sought to summarize the effect of different combination strategies on symptoms, physical signs, physiological variables, and outcomes in patients with AHF. Twelve trials were identified that assessed the addition of thiazide diuretics, sodium-glucose cotransporter 2 inhibitors, mineralocorticoid receptor antagonists, vasopressin receptor antagonists, carbonic anhydrase inhibitors, or loop diuretic intensification to conventional therapy for AHF.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Bruxelles, Belgium.
The effect of acetazolamide on regional brain tissue oxygenation in patients with acute brain injury (ABI) is unknown. We studied adult patients with ABI who received acetazolamide as per the treating physician's decision and had ICP and brain oxygen pressure (PbtO) monitoring. Baseline measurements of ICP, cerebral perfusion pressure (CPP), and PbtO were taken before administering acetazolamide; subsequent measurements were recorded every 5 min for a total of 20 min.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
Background And Purpose: Tumour hypoxia frequently presents a major challenge in the treatment of neuroblastoma (NBL). The neuroblastoma cells produce carbonic anhydrase IX (CA IX), an enzyme crucial for the survival of cancer cells in low-oxygen environments.
Experimental Approach: We designed and synthesised a novel high-affinity inhibitor of CA IX.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!