Inflammation has been argued to play a fundamental role in the pathogenesis of Alzheimer's disease. Mice transgenic for mutant human amyloid precursor protein (APP) develop progressive amyloid deposition, gliosis, and cognitive impairment. Paradoxically, intracranial administration of lipopolysaccharide (LPS) to promote neuroinflammation results in a reduction in amyloid-beta peptide (Abeta) burden concurrent with the inflammatory response. To determine whether microglia mediate Abeta clearance after LPS, we used dexamethasone to inhibit the microglial response. Amyloid precursor protein mice were injected intrahippocampally with either LPS or saline and were allowed to survive for 7 days with or without dexamethasone cotreatment. Brain tissue was then analyzed by immunohistochemistry. Hippocampal Abeta burden was reduced 7 days after LPS injection, and this was prevented by cotreatment with dexamethasone. Markers of microglial activation [CD45, complement receptor 3 (CR3), and macrosialin (CD68)] were increased by LPS, and these increases were attenuated by dexamethasone. Dexamethasone failed to block LPS-induced increases in all microglial markers, and Fcgamma receptors II/III and scavenger receptor A were increased by LPS but were unaffected by dexamethasone cotreatment. These results indicate a complex response by microglia to acute LPS treatment, with only some responses sensitive to steroidal anti-inflammatory drug treatment. Nonetheless, microglial activation was necessary to remove Abeta in this model of neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11481-007-9069-z | DOI Listing |
Aging Dis
January 2025
Geriatrics department, Renmin hospital of Wuhan University, Wuhan 430060, China.
Autophagy in microglia is essential for the clearance of amyloid-beta (Aβ) and amyloid plaques in Alzheimer's disease. However, reports regarding the levels of autophagy in microglia have been inconsistent; some studies indicate an early enhancement followed by a subsequent reduction, while others describe a persistently weakened state. Notably, there is a lack of systematic studies documenting the temporal changes in microglial autophagy.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China.
-(1,3-dimethylbutyl)-'-phenyl--phenylenediamine quinone (6-PPDQ), a novel contaminant derived from tire wear, has raised concerns due to its potential neurotoxicity, yet its long-term effects on mammalian neurological health remain poorly understood. This study investigates the neurotoxic and neuroinflammatory impacts of prolonged 6-PPDQ exposure using male C57BL/6 mice. Behavioral assessments revealed significant cognitive deficits, while biochemical analyses demonstrated increased levels of reactive oxygen species, apoptosis, and blood-brain barrier (BBB) disruption.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Pharmacy The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Microglia are progressively activated by inflammation and exhibit phagocytic dysfunction in the pathogenesis of neurodegenerative diseases. Lipid-droplet-accumulating microglia were identified in the aging mouse and human brain; however, little is known about the formation and role of lipid droplets in microglial neuroinflammation of Alzheimer's disease (AD). Here, we report a striking buildup of lipid droplets accumulation in microglia in the 3xTg mouse brain.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!