Intranasal tat alters gene expression in the mouse brain.

J Neuroimmune Pharmacol

Department of Laboratory Medicine, Veterans Affairs Medical Center, 4150 Clement St. (113A), San Francisco, CA 94121, USA.

Published: March 2007

Intranasal (IN) delivery of HIV-1 Tat in aging mice was investigated as a possible model for HIV-1 infection in the brain. After IN administration, the distribution of [(125)I]-labeled Tat in the brains of Swiss Webster mice was evaluated by autoradiography and gamma counting. [(125)I]-labeled Tat was detected at the highest concentrations in the olfactory bulb, cervical nodes, and trigeminal nerve tract. In another experiment, APPSw transgenic mice were used to model chronic Tat exposure. The mice were treated intranasally with 6 mug Tat (n = 4) or vehicle (n = 4) three times per week for 4 weeks. Total RNA was isolated from the frontal cortex, and differential gene expression analysis was performed using gene microarrays. Gene ontology profiles indicated innate immunity, inflammatory and apoptotic responses. Five genes of interest in the Tat-treated mice that were significantly elevated in the microarrays were validated by RT-PCR. One gene, the Toll-like receptor 9 (Tlr9), has previously been shown to activate signaling cascades leading to innate immunity and enhanced HIV-1 gene expression. A second gene, Fas, plays a key role in neuroinflammation. Two cysteine-rich cytokines associated with chemotaxis were elevated: MCP-1 (Ccl2), which is chemotactic for monocytes, and Ccl17 (TARC), which is chemotactic for lymphocytes. Finally, the gene sestrin was significantly elevated and has been associated with oxidative stress, in particular amyloid beta-induced oxidative stress. This IN Tat model of neuroinflammation may be useful to study HIV-1-induced neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11481-006-9053-zDOI Listing

Publication Analysis

Top Keywords

gene expression
12
gene
8
[125i]-labeled tat
8
innate immunity
8
oxidative stress
8
tat
6
mice
5
intranasal tat
4
tat alters
4
alters gene
4

Similar Publications

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.

View Article and Find Full Text PDF

Blue Light Damages Retinal Ganglion Cells Via Endoplasmic Reticulum Stress and Autophagy in Chickens.

Invest Ophthalmol Vis Sci

January 2025

Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China.

Purpose: Because chickens have excellent light perception properties, this study focused on investigating whether monochromatic light can cause photodamage in chicken retinal ganglion cells (RGCs).

Methods: Post-hatching day chickens were exposed to four different light-emitting diode light environments for five weeks, respectively, monochromatic blue light (480 nm), green light (560 nm), red light (660 nm), or white light (6000 K). The mechanisms through which monochromatic light influences the structure of the chicken retina were analyzed by detecting the morphological structure of the retina, gene and protein expression levels, and the ultrastructure of the optic nerve.

View Article and Find Full Text PDF

Objective: Although sexual minority men experience substantial discrimination, in addition to increased risk for several serious mental and somatic health problems, the biological mechanisms underlying these effects are unclear. To address this issue, we examined how experiences of social safety (i.e.

View Article and Find Full Text PDF

Cell lineage analysis is primarily undertaken to understand cell fate specification and diversification along a cell lineage tree. Built with dual repressible markers, twin-spot mosaic analysis with repressible cell markers (MARCM) labels the two daughter cells made by a common precursor in distinct colors. The power of twin-spot MARCM to systematically subdivide complex lineages is exemplified in studies of Drosophila neural stem-cell lineages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!