Opiate drug abuse exacerbates the pathogenesis of human immunodeficiency virus-1 (HIV-1) in the central nervous system through direct actions on glia and neurons. Opiate abuse causes widespread disruption of astroglial and microglial function, and significant increases in astroglial-derived proinflammatory cytokines and chemokines, which likely contributes to neuronal dysfunction, death, and HIV encephalitis. Neurons are also directly affected by opiate-HIV-1 interactions. HIV-1 and the viral proteins gp120 and Tat activate multiple caspase-dependent and caspase-independent proapoptotic pathways in neurons involving phosphatidylinositol 3-kinase (PI3 kinase)/Akt, as well as p38, c-Jun N-terminal kinase (JNK) and/or other mitogen-activated protein kinases (MAPKs). Opiates appear to decrease the threshold for HIV-1-mediated neurotoxicity by sending convergent signals that exacerbate proapoptotic events induced by viral and cellular toxic products. The synergistic proinflammatory and neurotoxic effects of opiate drugs on glia and neurons are largely mediated through mu opioid receptors, which are expressed by subpopulations of astroglia, microglia, and neurons. Opiate abuse intrinsically modifies the host response to HIV-1. Identification of how this occurs is providing considerable insight toward understanding the mechanisms underlying HIV-1-associated dementia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11481-005-9000-4 | DOI Listing |
Front Microbiol
February 2016
Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA.
Over 50% of HIV-1/AIDS patients suffer chronic pain. Currently, opioids are the cornerstone medications for treating severe pain in these patients. Ironically, emerging clinical data indicates that repeated use of opiate pain medicines might in fact heighten the chronic pain states in HIV patients.
View Article and Find Full Text PDFCurr HIV Res
July 2012
Department of Pharmacology and Toxicology, 1217 East Marshall Street, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA.
Opiate abuse and HIV-1 have been described as interrelated epidemics, and even in the advent of combined anti-retroviral therapy, the additional abuse of opiates appears to result in greater neurologic and cognitive deficits. The central nervous system (CNS) is particularly vulnerable to interactive opiate-HIV-1 effects, in part because of the unique responses of microglia and astroglia. Although neurons are principally responsible for behavior and cognition, HIV-1 infection and replication in the brain is largely limited to microglia, while astroglia and perhaps glial progenitors can be latently infected.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
March 2006
Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
Opiate drug abuse exacerbates the pathogenesis of human immunodeficiency virus-1 (HIV-1) in the central nervous system through direct actions on glia and neurons. Opiate abuse causes widespread disruption of astroglial and microglial function, and significant increases in astroglial-derived proinflammatory cytokines and chemokines, which likely contributes to neuronal dysfunction, death, and HIV encephalitis. Neurons are also directly affected by opiate-HIV-1 interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!