The objective of this study was to characterize the mutations selected by darunavir (DRV) use in protease inhibitor (PI)-experienced patients and the associated factors. We analyzed treatment failure in 54 PI-experienced human immunodeficiency virus (HIV)-infected patients on a DRV- and ritonavir-containing regimen. Viral genotyping was carried out at the baseline, at between 1 and 3 months of treatment, and at between 3 and 6 months of treatment to search for the selection of mutations conferring resistance to PIs. The median baseline HIV RNA level was 4.9 log(10) copies/ml, and the median CD4 count was 87 cells/mm(3). At the baseline, the median numbers of resistance mutations were as follows: 3 DRV resistance mutations, 4 major PI resistance mutations, and 10 minor PI resistance mutations. The most common mutations that emerged at rebound included V32I (44%), I54M/L (24%), L33F (25%), I84V (21%), and L89V (12%). Multivariate analysis showed that higher baseline HIV RNA levels and smaller numbers of nucleoside reverse transcriptase inhibitor simultaneously used with DRV were associated with a higher risk of DRV resistance mutation selection. By contrast, L76V, a known DRV resistance mutation, was found to decrease the risk of selection of another DRV resistance mutation. The occurrence of virological failure while a patient was on DRV was associated with the selection of mutations that increased the level of DRV resistance without affecting susceptibility to tipranavir (TPV). In these PI-treated patients who displayed treatment failure while they were on a DRV-containing regimen, we confirmed the set of emerging mutations associated with DRV failure and identified the factors associated with the selection of these mutations. TPV susceptibility does not seem to be affected by the selection of a DRV resistance mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224714PMC
http://dx.doi.org/10.1128/AAC.00909-07DOI Listing

Publication Analysis

Top Keywords

drv resistance
24
selection mutations
16
resistance mutations
16
resistance mutation
16
associated selection
12
treatment failure
12
mutations
11
resistance
11
drv
10
factors associated
8

Similar Publications

Highly mutated HIV-1 protease (PR) compromises the efficacy of lopinavir (LPV) and darunavir (DRV) used to formulate salvage regimens in HIV/AIDS management. Here, we report the kinetics of inhibition of lopinavir (LPV) and darunavir (DRV) on highly mutated South African HIV-1 subtype C PR obtained from clinical isolates. The wild-type and mutant South African HIV-1 subtype C PR were cloned and purified.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) for HIV drug resistance (DR) testing has an increasing number of applications for the detection of low-abundance drug-resistant variants (LA-DRVs) in regard to its features as a quasi-species. However, there is less information on its detection performance in DR detection with NGS. To determine the feasibility of using NGS technology in LA-DRV detection for HIV-1 pretreatment drug resistance, 80 HIV-infected individuals who had never undergone antiretroviral therapy were subjected to both NGS and Sanger sequencing (SS) in HIV-1 drug resistance testing.

View Article and Find Full Text PDF

Doravirine (DOR) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) approved for use in combination antiretroviral therapy (cART) for treatment of human immunodeficiency virus (HIV) in treatment-naive patients. Doravirine-based regimens are an option for patients with limited alternatives due to drug-drug interactions, toxicities, or resistance. A paucity of data exists for use of two-drug DOR-based regimens in treatment-experienced individuals.

View Article and Find Full Text PDF

Design, Synthesis, and Biological Evaluation of Darunavir Analogs as HIV-1 Protease Inhibitors.

ACS Bio Med Chem Au

October 2024

Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

Darunavir, a frontline treatment for HIV infection, faces limitations due to emerging multidrug resistant (MDR) HIV strains, necessitating the development of analogs with improved activity. In this study, a combinatorial in silico approach was used to initially design a series of HIV-1 PI analogs with modifications at key sites, P1' and P2', to enhance interactions with HIV-1 PR. Fifteen analogs with promising binding scores were selected for synthesis and evaluated for the HIV-1 PR inhibition activity.

View Article and Find Full Text PDF

Inhibition of HIV-1 protease is a cornerstone of antiretroviral therapy. However, the notorious ability of HIV-1 to develop resistance to protease inhibitors (PIs), particularly darunavir (DRV), poses a major challenge. Using quantum chemistry and computer simulations, this study aims to investigate the interactions between two novel PIs, GRL-004 and GRL-063, as well as a wild-type (WT) HIV strain and a DRV-resistant mutant strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!