A major obstacle in hepatitis C virus (HCV) research has been the lack of a permissive cell culture system that produces infectious viral particles. Significant breakthroughs have been achieved lately in establishing such culture systems. Yet to date, there are no reports of the applications of any of these systems in HCV drug screening. Here, we report the generation of two monocistronic, chimeric genotype 1 full-length HCV genome molecules. These molecules, C33J-Y835C-UBI and C33J-Y835C-FMDV2A, both contain the structural protein region from genotype 1 (subtype 1b, Con1) and the remaining region from the genotype 2a (JFH1) clone. Both contain the humanized Renilla luciferase reporter gene which is separated from the rest of the HCV open reading frame by two different cleavage sites. The viral RNAs replicated efficiently in transfected cells. Viral particles produced were infectious in naïve Huh7.5 cells, and the infectivity could be blocked by monoclonal antibody against a putative HCV entry cofactor, CD81. A pilot high-throughput screen of 900 unknown compounds was executed by both the genotype 2a subgenomic replicon system and the infectious system. Thirty-one compounds were identified as hits by both systems, whereas 78 compounds were identified as hits only for the infectious system, suggesting that the infectious system is capable of identifying inhibitors targeting the viral structural proteins and steps involving them in the viral life cycle. The infectious HCV system developed here provides a useful and versatile tool which should greatly facilitate the identification of HCV inhibitors currently not identified by the subgenomic replicon system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224717 | PMC |
http://dx.doi.org/10.1128/AAC.01133-07 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!