CUG-binding protein 1 (CUG-BP1) is a member of the CUG-BP1 and ETR-3-like factors (CELF) family of RNA-binding proteins, and is involved in myotonic dystrophy type 1 (DM1). Several mRNA targets of CUG-BP1 have been identified, including the insulin receptor, muscle chloride channel, and cardiac troponin T. On the other hand, CUG-BP1 has only a weak affinity for CUG repeats. We conducted quantitative-binding assays to assess CUG-BP1 affinities for several repeat RNAs by surface plasmon resonance (SPR). Although we detected interactions between CUG-BP1 and CUG repeats, other UG-rich sequences actually showed stronger interactions. Binding constants of CUG-BP1 for RNAs indicated that the affinity for UG repeats was far stronger than for CUG repeats. We also found that N-terminal deletion mutant of CUG-BP1 has UG repeat-binding activity in a yeast three-hybrid system, although C-terminal deletion mutant does not. Our data indicates that CUG-BP1 specifically recognized UG repeats, probably through cooperative binding of RNA recognition motifs at both ends of the protein. This is the first report of a binding constant for CUG-BP1 calculated in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvm230 | DOI Listing |
Genetics
December 2024
Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland.
Expansion of nucleotide repeat sequences is associated with more than 40 human neuromuscular disorders. The different pathogenic mechanisms associated with the expression of nucleotide repeats are not well understood. We use a Caenorhabditis elegans model that expresses expanded CUG repeats only in cells of the body wall muscle and recapitulate muscle dysfunction and impaired organismal motility to identify the basis by which expression of RNA repeats is toxic to muscle function.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Chemistry University of Massachusetts, Amherst, MA 01003, USA.
RNAs are major drivers of phase separation in the formation of biomolecular condensates. Recent studies suggest that RNAs can also undergo protein-free phase separation in the presence of divalent ions or crowding agents. Much remains to be understood regarding how the complex interplay of base stacking, base pairing, electrostatics, ion interactions, and structural propensities governs the phase behaviour of RNAs.
View Article and Find Full Text PDFRNA
November 2024
Rowan University, Rowan-Virtua School of Osteopathic Medicine, Rowan-Virtua School of Translational
Brain
October 2024
Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France.
Muscleblind-like proteins (MBNLs) are a family of RNA-binding proteins that play essential roles in the regulation of RNA metabolism. Beyond their canonical role in RNA regulation, MBNL proteins have emerged as key players in the pathogenesis of Myotonic Dystrophy type 1 (DM1). In DM1, sequestration of MBNL proteins by expansion of the CUG repeat RNA leads to functional depletion of MBNL, resulting in deregulated alternative splicing and aberrant RNA processing, which underlie the clinical features of the disease.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
Myotonic Dystrophy type 1 (DM1), a highly prevalent form of muscular dystrophy, is caused by (CTG) repeat expansion in the DMPK gene. Much of DM1 research has focused on the effects within the muscle and neurological tissues; however, DM1 patients also suffer from various metabolic and liver dysfunctions such as increased susceptibility to metabolic dysfunction-associated fatty liver disease (MAFLD) and heightened sensitivity to certain drugs. Here, we generated a liver-specific DM1 mouse model that reproduces molecular and pathological features of the disease, including susceptibility to MAFLD and reduced capacity to metabolize specific analgesics and muscle relaxants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!