In skin, the physiological consequence of an epithelial sodium channel (ENaC) deficiency is not obvious directly at birth. Nevertheless, within hours after birth, mice deficient for the alpha-subunit of the highly amiloride-sensitive epithelial sodium channel (alphaENaC/Scnn1a) suffer from a significant increased dehydration. This is characterized by a loss of body weight (by 6% in 6 h) and an increased transepidermal water loss, which is accompanied by a higher skin surface pH in 1-day-old pups. Although early and late differentiation markers, as well as tight junction protein distribution and function, seem unaffected, deficiency of alphaENaC severely disturbs the stratum corneum lipid composition with decreased ceramide and cholesterol levels, and increased pro-barrier lipids, whereas covalently bound lipids are drastically reduced. Ultrastructural analysis revealed morphological changes in the formation of intercellular lamellar lipids and the lamellar body secretion. Extracellular formation of the lamellar lipids proved to be abnormal in the knockouts. In conclusion, ENaC deficiency results in progressive dehydration and, consequently, weight loss due to severe impairment of lipid formation and secretion. Our data demonstrate that ENaC expression is required for the postnatal maintenance of the epidermal barrier function but not for its generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M708829200 | DOI Listing |
Respir Res
January 2025
Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China.
Background: Sepsis is a systemic inflammatory response caused by infection. When this inflammatory response spreads to the lungs, it can lead to acute lung injury (ALI) or more severe acute respiratory distress syndrome (ARDS). Pulmonary fibrosis is a potential complication of these conditions, and the early occurrence of pulmonary fibrosis is associated with a higher mortality rate.
View Article and Find Full Text PDFiScience
November 2024
Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China.
Inflammatory bowel disease (IBD) presents a range of extraintestinal manifestations, notably including oral cavity involvement. The mechanisms underlying oral-gut crosstalk in IBD are not fully understood. Exosomes, found in various body fluids such as saliva, play an unclear role in IBD that requires further exploration.
View Article and Find Full Text PDFMucosal Immunol
December 2024
Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China. Electronic address:
Inflammatory bowel diseases (IBDs) are characterized by unrestrained innate and adaptive immune responses and compromised intestinal epithelial barrier integrity. Regulatory T (T) cells are crucial for maintaining self-tolerance and immune homeostasis in intestinal tissues. Prostaglandin E (PGE), a bioactive lipid compound derived from arachidonic acid, can modulate T cell functions in a receptor subtype-specific manner.
View Article and Find Full Text PDFJ Adv Res
December 2024
Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China. Electronic address:
Introduction: Inflammatory bowel disease (IBD) is often associated with impaired proliferation and differentiation of intestinal stem cells (ISCs). Eicosapentaenoic acid (EPA), which is predominantly found in fish oil, has been recognized for its intestinal health benefits, although the potential mechanisms are not well understood.
Objectives: This study aimed to investigate the regulatory role and mechanism of EPA in colonic epithelial regeneration, specifically from the perspective of ISCs.
J Ethnopharmacol
December 2024
National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China. Electronic address:
Ethnopharmacological Relevance: Valeriana jatamansi Jones (V. jatamansi), a traditional Chinese medicine, is widely used in the treatment of gastrointestinal disorders, such as ulcerative colitis (UC). However, the active components of V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!