Background: An available whole genome sequence for Aspergillus flavus provides the opportunity to characterize factors involved in pathogenicity and to elucidate the regulatory networks involved in aflatoxin biosynthesis. Functional analysis of genes within the genome is greatly facilitated by the ability to disrupt or mis-express target genes and then evaluate their result on the phenotype of the fungus. Large-scale functional analysis requires an efficient genetic transformation system and the ability to readily select transformants with altered expression, and usually requires generation of double (or multi) gene deletion strains or the use of prototrophic strains. However, dominant selectable markers, an efficient transformation system and an efficient screening system for transformants in A. flavus are absent.
Results: The efficiency of the genetic transformation system for A. flavus based on uracil auxotrophy was improved. In addition, A. flavus was shown to be sensitive to the antibiotic, phleomycin. Transformation of A. flavus with the ble gene for resistance to phleomycin resulted in stable transformants when selected on 100 mug/ml phleomycin. We also compared the phleomycin system with one based on complementation for uracil auxotrophy which was confirmed by uracil and 5-fluoroorotic acid selection and via transformation with the pyr4 gene from Neurospora crassa and pyrG gene from A. nidulans in A. flavus NRRL 3357. A transformation protocol using pyr4 as a selectable marker resulted in site specific disruption of a target gene. A rapid and convenient colony PCR method for screening genetically altered transformants was also developed in this study.
Conclusion: We employed phleomycin resistance as a new positive selectable marker for genetic transformation of A. flavus. The experiments outlined herein constitute the first report of the use of the antibiotic phleomycin for transformation of A. flavus. Further, we demonstrated that this transformation protocol could be used for directed gene disruption in A. flavus. The significance of this is twofold. First, it allows strains to be transformed without having to generate an auxotrophic mutation, which is time consuming and may result in undesirable mutations. Second, this protocol allows for double gene knockouts when used in conjunction with existing strains with auxotrophic mutations. To further facilitate functional analysis in this strain we developed a colony PCR-based method that is a rapid and convenient method for screening genetically altered transformants. This work will be of interest to those working on molecular biology of aflatoxin metabolism in A. flavus, especially for functional analysis using gene deletion and gene expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212646 | PMC |
http://dx.doi.org/10.1186/1471-2180-7-104 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.
View Article and Find Full Text PDFJ Mol Model
January 2025
Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.
Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.
View Article and Find Full Text PDFJ Community Genet
January 2025
Graduate Program in Structural and Functional Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
In 2018, Portuguese researchers proposed the "Tool for Quality Assessment of Genetic Counseling," a 5-point Likert scale comprising 50 items across five dimensions, designed to assess genetic counseling from the professional's perspective. This descriptive, cross-sectional study aimed to adapt this tool to Brazilian Portuguese, validate it among Brazilian clinical geneticists, and conduct a preliminary assessment of the quality of genetic counseling in Brazil. The adaptation process involved expert-driven content validation and calculation of the Content Validity Index (CVI) to ensure equivalence between the original and adapted versions.
View Article and Find Full Text PDFClin Transl Oncol
January 2025
Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.
Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!