Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality.

Biomacromolecules

Department of Chemical and Environmental Engineering, University of California, Riverside, California 92507, USA.

Published: December 2007

Recombinant DNA methods have been exploited to enable the creation of protein-based block copolymers with programmable sequences, desired properties, and predictable three-dimensional structures. These advantages over conventional polymer counterparts facilitate the utility of this new class of biomaterials in a wide range of applications. In this project, we exploited the environmental application of protein-based block copolymers based on elastin-like protein (ELP) sequences. Triblock copolymers containing charged and hydrophobic segments were synthesized. Chain lengths of each segment were manipulated in order to maintain a gelation point below room temperature. Polyhistidine sequences were successfully incorporated into the hydrophilic segment without disruption of the self-assembled hydrogel formation. The microscopic structure was further investigated using laser confocal microscopy. The metal binding capability and capacity of resulting hydrogel were studied to demonstrate the functionality of polyhistidine and its environmental application for heavy metal removal. Reversibility of metal binding was demonstrated, indicating the cost-effectiveness of this hydrogel. Significantly, we envision that this versatile strategy of incorporating functional groups within a 3-D protein network provides new possibilities in creation of biomaterials with great control over structure-property relationships.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm700662nDOI Listing

Publication Analysis

Top Keywords

metal binding
12
based elastin-like
8
protein-based block
8
block copolymers
8
environmental application
8
genetic engineering
4
engineering self-assembled
4
self-assembled protein
4
hydrogel
4
protein hydrogel
4

Similar Publications

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr.

View Article and Find Full Text PDF

Upregulation of p52-ZER6 (ZNF398) increases reactive oxygen species by suppressing metallothionein-3 in neuronal cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea. Electronic address:

ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.

View Article and Find Full Text PDF

Design and synthesis of a carbohydrate-derived chemosensor for selective Ni(II) ion detection: A turn-off approach.

Carbohydr Res

January 2025

Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India. Electronic address:

Nickel, an essential transition metal, plays a vital role in biological systems and industries. However, exposure to nickel can cause severe health issues, such as asthma, dermatitis, pneumonitis, neurological disorders, and cancers of the nasal cavity and lungs. Due to nickel's toxicity and extensive industrial use, efficient sensors for detecting Ni ions in environmental and biological contexts are essential.

View Article and Find Full Text PDF

Discovering electrocatalysts that can efficiently convert carbon dioxide (CO) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, , single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO reduction (COR) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for COR to methane and methanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!