Tissue engineering of functional arteries is challenging. Within the pulmonary artery wall, smooth muscle cells (PASMCs) have site-specific developmental and functional phenotypes, reflecting differing contractile roles. The force generated by PASMCs isolated from the inner 25% and outer 50% of the media of intrapulmonary elastic arteries from five normal and eight chronically hypoxic (hypertensive) 14 day-old piglets was quantified in a three-dimensional (3D) collagen construct, using a culture force monitor. Outer medial PASMCs from normal piglets exerted more force (528 +/- 50 dynes) than those of hypoxic piglets (177 +/- 42 dynes; p < 0.01). Force generation by inner medial PASMCs from normal and hypoxic piglets was similar (349 +/- 35 and 239 +/- 60 dynes). In response to agonist (thromboxane) stimulation, all PASMCs from normal and hypoxic piglets contracted, but the increase in force generated by outer and inner hypoxic PASMCs (ranges 13-72 and 14-56 dynes) was less than by normal PASMCs (ranges 27-154 and 34-159 dynes, respectively; p < 0.05 for both). All hypoxic PASMCs were unresponsive to antagonist (sodium nitroprusside) stimulation, all normal PASMCs relaxed (range - 87 to - 494 dynes). Myosin heavy chain expression by both hypoxic PASMC phenotypes was less than normal (p < 0.05 for both), as was the activity of focal adhesion kinase, regulating contraction, in hypoxic inner PASMCs (p < 0.01). Chronic hypoxia resulted in the development of abnormal PASMC phenotypes, which in collagen constructs exhibited a reduction in contractile force and reactivity to agonists. Characterization of the mechanical response of spatially distinct cells and modification of their behaviour by hypoxia is critical for successful tissue engineering of major blood vessels.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.39DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
pasmcs normal
12
+/- dynes
12
hypoxic piglets
12
pasmcs
10
pulmonary artery
8
smooth muscle
8
muscle cells
8
force generated
8
hypoxic
8

Similar Publications

Effects of Chemical Pretreatments of Wood Cellulose Nanofibrils on Protein Adsorption and Biological Outcomes.

ACS Appl Mater Interfaces

January 2025

Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.

Wood-based nanocellulose is emerging as a promising nanomaterial in the field of tissue engineering due to its unique properties and versatile applications. Previously, we used TEMPO-mediated oxidation (TO) and carboxymethylation (CM) as chemical pretreatments prior to mechanical fibrillation of wood-based cellulose nanofibrils (CNFs) to produce scaffolds with different surface chemistries. The aim of the current study was to evaluate the effects of these chemical pretreatments on serum protein adsorption on 2D and 3D configurations of TO-CNF and CM-CNF and then to investigate their effects on cell adhesion, spreading, inflammatory mediator production , and the development of foreign body reaction (FBR) .

View Article and Find Full Text PDF

Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated.

View Article and Find Full Text PDF

Cardiac MRI in Heart Transplantation: Approaches and Clinical Insights.

Radiographics

February 2025

From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.).

Orthotopic heart transplant (OHT) is a well-established therapy for end-stage heart failure that leads to improved long-term survival rates, with careful allograft surveillance essential for optimizing clinical outcomes after OHT. Unfortunately, complications can arise after OHT that can compromise the success of the OHT. Cardiac MRI is continually evolving, with a range of advanced techniques that can be applied to evaluate allograft structure and function.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the biological changes in rabbit corneas caused by two light-activated corneal stiffening methods: riboflavin with UVA and WST11 with NIR.
  • Differentially expressed proteins were identified following treatments, showing RF-D/UVA affected cell metabolism and keratocyte differentiation, while WST-D/NIR influenced extracellular matrix regulation.
  • The findings reveal a metabolic shift towards glycolysis in RF-D/UVA treated corneas compared to normal respiration in WST-D/NIR treated corneas, highlighting the distinct biological effects of each treatment.
View Article and Find Full Text PDF

Novel genetic insight for psoriasis: integrative genome-wide analyses in 863 080 individuals and proteome-wide Mendelian randomization.

Brief Bioinform

November 2024

Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.

Psoriasis affects a significant proportion of the worldwide population and causes an extremely heavy psychological and physical burden. The existing therapeutic schemes have many deficiencies such as limited efficacies and various side effects. Therefore, novel ways of treating psoriasis are urgently needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!