In 2003, channelrhodopsin-2 (ChR2) from Chlamydomonas reinhardtii was discovered to be a light-gated cation channel, and since that time the channel became an excellent tool to control by light neuronal cells in culture as well as in living animals with high temporal and spatial resolution in a noninvasive manner. However, little is known about the spectral properties and their relation to the channel function. We have expressed ChR2 in the yeast Pichia pastoris and purified the protein. Flash-photolysis data were combined with patch-clamp studies to elucidate the photocycle. The protein absorbs maximally at approximately 480 nm before light excitation and shows flash-induced absorbance changes with at least two different photointermediates. Four relaxation processes can be extracted from the time course that we have analysed in a linear model for the photocycle leading to the kinetic intermediates P(1) to P(4). A short-lived photointermediate at 400 nm, suggesting a deprotonation of the retinal Schiff base, is followed by a red-shifted (520 nm) species with a millisecond lifetime. The first three kinetic intermediates in the photocycle, P(1) to P(3), are described mainly by the red-shifted 520-nm species. The 400-nm species contributes to a smaller extent to P(1) and P(2). The fourth one, P(4), is spectroscopically almost identical with the ground state and lasts into the seconds time region. We compared the spectroscopic data to current measurements under whole-cell patch-clamp conditions on HEK 293 cells. The lifetimes of the spectroscopically and electrophysiologically determined intermediates are in excellent agreement. The intermediates P(2) and P(3) (absorbing at 520 nm) are identified as the cation permeating states of the channel. Under stationary light, a modulation of the photocurrent by green light (540 nm) was observed. We conclude that the red-shifted spectral species represents the open channel state, and the thermal relaxation of this intermediate, the transition from P(3) to P(4), is coupled to channel closing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2007.10.072 | DOI Listing |
Cell Mol Life Sci
January 2025
Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.
Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
Department of Neurology, the Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan 410007, China.
Objective: To explore the clinical manifestations and genetic characteristics of a child with Leukoencephalopathy with ataxia (LKPAT) caused by a CLCN2 gene variant.
Methods: A retrospective analysis was conducted on the clinical data of a child admitted to Hunan Children's Hospital in June 2024 due to "intermittent convulsions for 13 days". Peripheral blood samples were collected from the child and his parents for whole exome sequencing, followed by Sanger sequencing validation and pathogenicity analysis of candidate variants.
Growing evidence shows that lysine methylation is a widespread protein post-translational modification (PTM) that regulates protein function on histone and nonhistone proteins. Numerous studies have demonstrated that the dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well-documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and nonhistone lysine methylation (Kme) simultaneously across multiple samples.
View Article and Find Full Text PDFPsych J
January 2025
Department of Psychology, Suzhou University of Science and Technology, Suzhou, China.
Visual attention is intrinsically rhythmic and oscillates based on the discrete sampling of either single or multiple objects. Recently, studies have found that the early visual cortex (V1/V2) modulates attentional rhythms. Both monocular and binocular cells are present in the early visual cortex, which acts as a transfer station for transformation of the monocular visual pathway into the binocular visual pathway.
View Article and Find Full Text PDFOcul Surf
January 2025
Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
Purpose: Mechanical stress on the ocular surface, such as from eye-rubbing, has been reported to lead to inflammation and various ocular conditions. We hypothesized that the mechanosensitive Piezo1 channel in the conjunctival epithelium contributes to the inflammatory response at the ocular surface after receiving mechanical stimuli.
Methods: Human conjunctival epithelial cells (HConjECs) were treated with Yoda1, a Piezo1-specific agonist, and various allergens to measure cytokine expression levels using qRT-PCR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!