Monolithic columns have been prepared via ring-opening metathesis polymerization using different monomers and crosslinkers, i.e. norborn-2-ene, 1,4,4a,5,8,8a-hexahydro-1,4,5,8-exo,endo-dimethanonaphthalene, cyclooctene and tris(cyclooct-4-en-1-yloxy)methylsilane. 2-Propanol and toluene were used as macro- and microporogens. Alternatively, monolithic supports were realized via electron beam triggered free radical polymerization using trimethylolpropane triacrylate and ethylmethacrylate. Here, 2-propanol, 1-dodecanol and toluene were used as porogens. The three monolithic supports were structurally characterized by inverse size exclusion chromatography and investigated for their separation capabilities for a series of proteins. Separation efficiencies are discussed within the context of the different structural features of the monolithic supports and are compared to the separation data obtained on a commercial silica-based Chromolith RP-18e column.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2007.11.016DOI Listing

Publication Analysis

Top Keywords

monolithic supports
12
monolithic columns
8
columns prepared
8
prepared ring-opening
8
ring-opening metathesis
8
metathesis polymerization
8
electron beam
8
triggered free
8
free radical
8
radical polymerization
8

Similar Publications

Load-bearing capacity of screw-retained fixed dental prostheses made of monolithic zirconia on different abutment designs and abutment-free implant connection.

J Dent

January 2025

Senior Research and Teaching Assistant, Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland. Electronic address:

Objectives: A new abutment-free implant connection allows for direct screwing of FDPs on implants to avoid complications caused by cement rests or screw loosening, which may affect to screw torque and load distribution. The objective of this study was to test the initial (Fi) and final failure (Ff) loads and torque changes of abutment-free monolithic zirconia CAD-CAM fixed dental prostheses (FDPs) compared to titanium FDPs on different abutment designs.

Methods: Three-unit screw-retained FDPs (n=50) on two implants (n=100) were divided into groups (n=10) based on the implant-abutment connection and material of the supra-structure: (1) abutment-free monolithic CAD-CAM zirconia FDP (Abut-free-Zr), (2) abutment-free veneered titanium FDPs (Abut-free-Ti), (3) monolithic zirconia FDPs with titanium base abutments (Zr-Ti-Base), (4) monolithic zirconia FDPs on multi-unit abutments (Zr-MU), (5) veneered titanium FDP on multi-unit abutments (Ti-MU).

View Article and Find Full Text PDF

Full-arch implant-supported rehabilitation using reverse scan technique: A case report.

J Oral Implantol

January 2025

Department of Orthodontics and Pedodontics, Faculty of Dentistry, Van Lang University, Ho Chi Minh City, Vietnam.

The reverse scan technique offers several advantages, such as improvements of accuracy and visibility of critical anatomical structures, minimizing chair time, and providing better patient comfort. This was a case report successfully employing the reverse scan technique. A 72-year-old male patient desired to restore his teeth in both jaws, as he experienced difficulty eating and had never worn dentures.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the clinical performance (degree of trueness) of a novel scan body "tooth-modified Scan body" (TMSB)& conventional scan body (CSB) in implant-supported full arch screw retained cases.

Methods: Seven edentulous arches (two maxillae, five mandibles) in 6 patients were rehabilitated with monolithic zirconia screw-retained implant prostheses supported by 4 (n = 1) and 5 implants (n = 6) for a total amount of 34 implants. Implant locations were scanned by intra-oral scanner (IOS) using two types of scan bodies, conventional scan bodies (CSB) in group (1) and tooth-modified scan bodies (TMSB) in group (2).

View Article and Find Full Text PDF

Selective Adsorption of Chlorine Species on RuO Sites for Efficient Elimination of Vinyl Chloride on the Ru/SnO Catalyst.

Environ Sci Technol

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.

The main bottleneck in the catalytic combustion of chlorinated volatile organic compounds (CVOCs) is deactivation and the production of chlorine-containing byproducts originating from the chlorine species deposited on the catalyst. Herein, Ru supported on SnO (Ru/SnO) was prepared with the lattice matching principle. As RuO and SnO are both rutile phases, Ru species were present as highly dispersed RuO particles on the Ru/SnO catalyst.

View Article and Find Full Text PDF

Gold nanoparticles supported onto zwitterionic polymer capillary monoliths meant for efficient enrichment of microcystins in water.

Talanta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou, 350116, Fuzhou University, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350116, China. Electronic address:

The release of microcystin (MCs) in aquatic ecosystems poses a substantial risk to the safety of irrigation and drinking water. In view of the challenges associated with monitoring MCs in water bodies, given their low concentration levels (μg/L to ng/L) and the presence of diverse matrix interferences, there is an urgent need to develop an efficient, cost-effective and selective enrichment technique for MCs prior to its quantification. In this work, a gold nanoparticles (AuNPs)-functionalized zwitterionic polymer monolith was described and further applied for the affinity enrichment of MCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!