Natural variation occurs in the uptake and distribution of essential and nonessential trace elements among crop species and among cultivars within species. Such variation can be responsible for trace element deficiencies and toxicities, which in turn can affect the quality of food. Plant breeding can be an important tool to both increase the concentration of desirable trace elements and reduce that of potentially harmful trace elements such as cadmium (Cd). Selection programs for a low-Cd content of various crops, including durum wheat, sunflower, rice and soybean have been established and low-Cd durum wheat cultivars and sunflower hybrids have been developed. In durum wheat (Triticum turgidum L. var durum), low-Cd concentration is controlled by a single dominant gene. The trait is highly heritable, and incorporation of the low-Cd allele can help to reduce the average grain Cd to levels below proposed international limits. The allele for low-Cd concentration does not appear to affect major economic traits and should not cause problems when incorporated into durum cultivars. The cost of Cd selection in a breeding program is initially large both in terms of Cd determination and reduced progress towards development of other economic traits, but declines as more breeding lines in the program carry the low-Cd trait and are utilized in new crosses. Production of low-Cd crop cultivars can be used as a tool to reduce the risk of movement of Cd into the human diet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2007.10.038 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFEnviron Manage
January 2025
Department of Engineering, Reykjavik University, Reykjavík, Iceland.
This research assesses heavy metal contamination within the riparian zone of the Danro River, a tributary of the Ganges River basin in India, particularly impacted by sand mining activities. The study conducted analyses on major and trace elements in soil samples, focusing on those identified as ecologically hazardous by the Water Framework Directive of India. Utilizing a combination of indices (Enrichment Factor, Pollution Load Index, and Index of geo-accumulation) and statistical techniques such as Principal Component Analysis (PCA), the investigation aimed to evaluate contamination severity, ecological risks, and pollution sources.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!