Chemically modified tetracyclines (CMTs 1-10) were developed as non-antibiotic inhibitors of matrix metalloproteinases (MMPs). We previously demonstrated that MMP inhibition alone is insufficient to explain the pro-apoptotic action of CMTs in osteoclast lineage cells and we have explored additional mechanisms of action. We compared the characteristics of apoptosis in RAW264.7 murine monocyte and osteoclast cultures treated with pharmacologically relevant concentrations of CMT3 or the bisphosphonate alendronate, which induces osteoclast apoptosis through inhibition of farnesyl diphosphate synthase. CMT3 induced apoptosis rapidly (2-3h), whereas alendronate-induced apoptosis was delayed (>12h). CMT3-treated cells did not accumulate unprenylated Rap1A in contrast to cells treated with alendronate. Importantly, CMT3 induced a rapid loss of mitochondrial stability in RAW264.7 cells measured by loss of Mitotracker((R)) Red fluorescence, while bongkrekic acid protected polykaryons from CMT3-induced apoptosis. Modulation of mitochondrial function is therefore a significant early action of CMT3 that promotes apoptosis in osteoclast lineage cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2007.11.054 | DOI Listing |
Cell Commun Signal
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.
View Article and Find Full Text PDFMech Ageing Dev
January 2025
Department of Medicine, Divisions of Geriatric Medicine and Gerontology, the Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota. Electronic address:
Preclinical models of age-related osteoporosis have been developed based on the accumulation and clearance of senescent cells. The former include animal models based on telomere dysfunction and focal radiation; the latter based on genetic and pharmacological targeting (i.e.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint swelling, pain, and bone remodeling. We previously reported that autotaxin (ATX) deficiency disrupts lipid rafts in macrophages. Lipid raft disruption results in the dysregulation of RANK signaling, which is crucial for osteoclastogenesis and the pathogenesis of RA.
View Article and Find Full Text PDFElife
December 2024
Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States.
The IncRNA was initially believed to be dispensable for physiology due to the lack of observable phenotypes in knockout (KO) mice. However, our study challenges this conclusion. We found that both KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis.
View Article and Find Full Text PDFPathol Int
December 2024
Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Japan.
Bone is a unique organ crucial for locomotion, mineral metabolism, and hematopoiesis. It maintains homeostasis through a balance between bone formation by osteoblasts and bone resorption by osteoclasts, which is regulated by the basic multicellular unit (BMU). Abnormal bone metabolism arises from an imbalance in the BMU.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!