Mesoporous silica materials with a centered rectangular symmetry (cmm) have been synthesized through a facile direct-templating method using tetraethylorthosilicate (TEOS) and amphiphilic block co-polymers Pluronic P123 under acidic conditions. The amino groups have been grafted to as-synthesized mesoporous silica by [1-(2-amino-ethyl)-3-aminopropyl]trimethoxysilane (AAPTS). Thus obtained amino-functionalized mesoporous silica (denoted as NN-silica) was used for sequestration of Cr(VI) from aqueous solution. After sequestration of Cr(VI), the sample was denoted as Cr(VI)-silica. The parent mesoporous silica, NN-silica and Cr(VI)-silica were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and N(2) adsorption-desorption isotherms. XRD and TEM results confirm that the structure of these samples is centered rectangular symmetry (cmm). N(2) adsorption-desorption isotherms show that there is a remarkable decrease in surface area and pore volume for NN-silica (S(BET)=54.5 m(2)g(-1), V(P)=0.09 cm(3)g(-1)) and Cr(VI)-silica (S(BET)=53.2 m(2)g(-1), V(P)=0.07 cm(3)g(-1)) compared to the parent mesoporous silica (S(BET)=444.0 m(2)g(-1), V(P)=0.71 cm(3)g(-1)). The BJH desorption average diameter of NN-silica, Cr(VI)-silica and the parent mesoporous silica is 4.40 nm, 4.07 nm and 5.11 nm, respectively. The results reveal the channels of as-synthesized mesoporous silica are essentially grafted with abundant amino groups and loaded with Cr(VI). The adsorption experiment results show that the functionalized mesoporous silica materials possess an increased Cr(VI) adsorption capacity and the maximum Cr(VI) loadings at 25, 35 and 45 degrees C can reach 2.28, 2.86 and 3.32 mmol/g, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2007.09.093 | DOI Listing |
ACS Biomater Sci Eng
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
In most studies, the penetration of nanoparticles into tumors was mainly dependent on the enhanced permeability and retention (ERP) effect. However, the penetration of nanoparticles would be limited by tumor-dense structure, immune system, and other factors. To solve these problems, macrophages with active tropism to tumor tissues, loaded nanoparticles with photothermal therapy, and chemotherapy were designed.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
Mesoporous silica particles are of great interest in the field of dental composites as functional inorganic fillers due to their unique interconnected pores which can form micromechanical interlocking at the filler-resin interfaces. However, the degradation of mesoporous silica is fast in wet environments, leading to the poor mechanical stability of dental composites. Here, we synthesized Zr-doped mesoporous silica spheres (Zr-MSS) to increase the chemical stability of the particles.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
The sensitive detection of inflammatory biomarkers in gingival crevicular fluid (GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based electrochemiluminescence (ECL) immunosensors offer a promising approach for the fast and convenient detection of biomarkers. However, luminol's low ECL efficiency under neutral conditions remains a challenge.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University Taif 21944 Saudi Arabia.
Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.
View Article and Find Full Text PDFSci Rep
January 2025
Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt.
This study investigates how biogenic mesoporous silica nanoparticles (MS-NPs) extracted from rice straw residues, a sustainable and economical bio-source, affect White Ordinary Portland Cement (WOPC) paste performance. A comprehensive investigation using varied fractions of 0.25, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!