Previous studies have shown that GABAergic neuroactive steroids increase Y1 receptor (Y1R) gene expression in the amygdala of Y1R/LacZ transgenic mice, harbouring the murine Y1R gene promoter linked to a LacZ reporter gene. As ethanol is known to increase GABAergic neuroactive steroids, we investigated the relationship between fluctuations in the brain content of neuroactive steroids induced by chronic voluntary ethanol consumption or ethanol discontinuation and both the level of neuropeptide Y (NPY) immunoreactivity and Y1R gene expression in the amygdala of Y1R/LacZ transgenic mice. Ethanol discontinuation (48 h) after voluntary consumption of consecutive solutions of 3%, 6%, 10% and 20% (v/v) ethanol over 4 weeks produced an anxiety-like behaviour as measured by elevated plus maze. Voluntary ethanol intake increased the cerebrocortical concentration of the progesterone metabolite 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) that returned to control level 48 h after discontinuation of ethanol intake. Ethanol discontinuation significantly decreased NPY immunoreactivity and concomitantly increased Y1R/LacZ transgene expression in the amygdala, whereas chronic ethanol intake failed to affect these parameters. The 5alpha-reductase inhibitor finasteride prevented both the increase in the cerebrocortical concentration of 3alpha,5alpha-TH PROG apparent after 4 weeks of ethanol intake and the changes in NPY immunoreactivity and transgene expression induced by ethanol discontinuation. Data suggest that 3alpha,5alpha-TH PROG plays an important role in the changes in NPY-Y1R signalling in the amygdala during ethanol discontinuation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.05077.xDOI Listing

Publication Analysis

Top Keywords

ethanol discontinuation
20
expression amygdala
16
neuroactive steroids
16
ethanol intake
16
ethanol
13
y1r/lacz transgenic
12
transgenic mice
12
y1r gene
12
npy immunoreactivity
12
3alpha5alpha-th prog
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!