An efficient breakdown of lignocellulosic biomass is a prerequisite for the production of second-generation biofuels. Cellulases are key enzymes in this process. We crystallized complexes between hemithio-cello-deca and dodecaoses and the inactive mutants E44Q and E55Q of the endo-processive cellulase Cel48F, one of the most abundant cellulases in cellulosomes from Clostridium cellulolyticum, to elucidate its processive mechanism. In both complexes, the cellooligosaccharides occupy similar positions in the tunnel part of the active site but are more or less buried into the cleft, which hosts the active site. In the E44Q complex, it proceeds along the upper part of the cavity, while it occupies in the E55Q complex the same productive binding subsites in the lower part of the cavity that have previously been reported in Cel48F/cellooligosaccharide complexes. In both cases, the sugar moieties are stabilized by stacking interactions with aromatic side chains and H bonds. The upper pathway is gated by Tyr403, which blocks its access in the E55Q complex and offers a new stacking interaction in the E44Q complex. The new structural data give rise to the hypothesis of a two-step mechanism in which processive action and chain disruption occupy different subsites at the end of their trajectory. In the first part of the mechanism, the chain may smoothly slide up to the leaving group site along the upper pathway, while in the second part, the chain is cleaved in the already described productive binding position located in the lower pathway. The solved native structure of Cel48F without any bound sugar in the active site confirms the two side-chain orientations of the proton donor Glu55 as observed in the complex structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2007.10.039DOI Listing

Publication Analysis

Top Keywords

active site
12
cellulase cel48f
8
clostridium cellulolyticum
8
processive action
8
e44q complex
8
e55q complex
8
productive binding
8
upper pathway
8
complex
6
structures mutants
4

Similar Publications

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

A terpene synthase gene (mtas) from Menisporopsis theobromae BCC 4162 was heterologously expressed in Aspergillus oryzae NSAR1, resulting in the production of (+)-aristolochene. Mutations were introduced in MtAS at aromatic residues (Y83, F103, F169, and W323) surrounding the active site, which are critical for precursor cyclisation and intermediate stabilisation during aristolochene biosynthesis. Transformants harbouring mutated mtas, specifically F103W, F169A and F169W, produced (2R,4S,5R,7S)-2-hydroxyaristolochene as the major product, along with aristolochene and other tentative metabolites, including germacrene A and sesquiterpenoids.

View Article and Find Full Text PDF

Freshwater ecosystems face significant threats, including pollution, habitat loss, invasive species, and climate change. To address these challenges, management strategies and restoration efforts have been broadly implemented. Across Europe, such efforts have resulted in overall improvements in freshwater biodiversity, but recovery has stalled or failed to occur in many localities, which may be partly caused by the limited dispersal capacity of many species.

View Article and Find Full Text PDF

[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.

View Article and Find Full Text PDF

Angiotensin-I converting enzyme (ACE) regulates the levels of disparate bioactive peptides, notably converting angiotensin-I to angiotensin-II and degrading amyloid beta. ACE is a heavily glycosylated dimer, containing 4 analogous catalytic sites, and exists in membrane bound and soluble (sACE) forms. ACE inhibition is a frontline, FDA-approved, therapy for cardiovascular diseases yet is associated with significant side effects, including higher rates of lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!