Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors.

Biochem Biophys Res Commun

Dipartimento di Scienze Farmaceutiche, Universita' di Genova, viale Benedetto XV, 3, I-16132 Genova, Italy.

Published: January 2008

O-Phthalimidoethyl-N-arylthiocarbamates (TCs) have been recently identified as a new class of potent HIV-1 reverse transcriptase (RT) non-nucleoside inhibitors (NNRTIs), by means of computer-aided drug design techniques [Ranise A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M. La Colla, et al., Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives, J. Med. Chem. 48 (2005) 3858-3873]. To elucidate the atomic details of RT/TC interaction and validate an earlier TC docking model, the structures of three RT/TC complexes were determined at 2.8-3.0A resolution by X-ray crystallography. The conformations adopted by the enzyme-bound TCs were analyzed and compared with those of bioisosterically related NNRTIs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.11.036DOI Listing

Publication Analysis

Top Keywords

hiv-1 reverse
12
reverse transcriptase
12
non-nucleoside inhibitors
8
crystal structures
4
structures hiv-1
4
transcriptase complexes
4
complexes thiocarbamate
4
thiocarbamate non-nucleoside
4
inhibitors o-phthalimidoethyl-n-arylthiocarbamates
4
o-phthalimidoethyl-n-arylthiocarbamates tcs
4

Similar Publications

Background: Neuropsychiatric adverse events (NPAEs) are associated with several antiretrovirals. Doravirine (DOR), a non-nucleoside reverse transcriptase inhibitor indicated for HIV-1 treatment, does not interact significantly with known neurotransmitter receptors in vitro. First-line therapy with DOR-based regimens resulted in significantly fewer NPAEs than efavirenz/emtricitabine/tenofovir disoproxil fumarate (EFV/FTC/TDF) and similar rates to those of ritonavir-boosted darunavir (DRV/r) with 2 nucleos(t)ide reverse transcriptase inhibitors (NRTIs) through Week 96 of the phase 3 DRIVE-AHEAD and DRIVE-FORWARD studies, respectively.

View Article and Find Full Text PDF

Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment.

View Article and Find Full Text PDF

Background: The treatment management of human immunodeficiency virus (HIV)-2 infection presents greater challenges compared to HIV-1 infection, primarily because of inherent resistance against non-nucleoside reverse transcriptase inhibitors. Integrase strand transfer inhibitors, particularly dolutegravir, have improved treatment outcomes for people with HIV-2. Lenacapavir, a novel and potent antiretroviral capsid inhibitor, offers additional therapeutic options.

View Article and Find Full Text PDF

Synthesis, Characterization, and antiviral evaluation of New Chalcone-Based Imidazo[1,2-a]pyridine Derivatives: Insights from in vitro and in silico Anti-HIV studies.

Bioorg Chem

December 2024

Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco. Electronic address:

Given the ease of synthetic accessibility and the promising biological profile demonstrated by both imidazo[1,2-a]pyridine and Chalcone derivatives, a series of Chalcone-based imidazo[1,2-a]pyridine derivatives were synthesized and characterized using H NMR, C NMR, Mass Spectrometry and FTIR techniques. Density functional theory (DFT) was employed to investigate the structural and electronic properties, providing insights into potential reactive sites. The synthesized compounds were evaluated in vitro for their antiviral properties against human immunodeficiency virus type-1 (HIV-1) and human immunodeficiency virus type-2 (HIV-2) in MT-4 cells.

View Article and Find Full Text PDF

Two Disaccharide-Bearing Polyethers, K-41B and K-41Bm, Potently Inhibit HIV-1 via Mechanisms Different from That of Their Precursor Polyether, K-41A.

Curr Issues Mol Biol

November 2024

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.

The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!