AbstractThis review article focuses on intranasal immunisation against influenza,although it also encompasses antigen uptake and processing in the nasopharyngealpassages, host defence from influenza and current influenza vaccination practices.Improvement of current vaccination strategies is clearly required; current proceduresinvolve repeated annual injections that sometimes fail to protect the recipient. It isenvisaged that nonpercutaneous immunisation would be more attractive to potentialvaccinees, thus improving uptake and coverage. As well as satisfying noninvasivecriteria, intranasal influenza immunisation has a number of perceived immunologicaladvantages over current procedures. Perhaps one of the greatest attributes of thisapproach is its potential to evoke the secretion of haemagglutinin-specific IgAantibodies in the upper respiratory tract, the main site of viral infection. Inactivated influenza vaccines have the advantage that they have a long historyof good tolerability as injected immunogens, and in this respect are possibly morelikely to be licensed than attenuated viruses. Inert influenza vaccines are poormucosal immunogens, requiring several administrations, or prior immunologicalpriming, in order to engender significant antibody responses. The use of vaccinedelivery systems or mucosal adjuvants serves to appreciably improve theimmunogenicity of mucosally applied inactivated influenza vaccines. As is the casewhen they are introduced parenterally, inactivated influenza vaccines are relativelypoor stimulators of virus-specific cytotoxic T lymphocyte activity following nasalinoculation. Live attenuated intranasal influenza vaccines are at a far moreadvanced stage of clinical readiness (phase III versus phase I). With the use of liveattenuated vaccines, it is possible to stimulate mucosal and cell-mediatedimmunological responses of a similar kind to those elicited by natural influenzainfection. In children, recombinant live attenuated cold-adapted influenza viruses arewell tolerated. Moreover, cold-adapted influenza viruses usually stimulate protectiveimmunity following only a single nasal inoculation. Safety of recombinant liveattenuated cold-adapted influenza viruses has also been demonstrated in high riskindividuals with cystic fibrosis, asthma, cardiovascular disease and diabetes mellitus.They are not suitable for immunising immunocompromised patients, however, andare poorly efficacious in individuals with pre-existing immunity to strains closelyantigenically matched with the recombinant virus. According to the reviewedliterature, it is apparent that intranasal administration of vaccine as an aerosol issuperior to administration as nose drops. The information reviewed in this papersuggests that nasally administered influenza vaccines could make a substantialimpact on the human and economic cost of influenza.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2165/00063030-200013010-00005 | DOI Listing |
Semin Respir Crit Care Med
January 2025
Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), , (), , and . Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.
View Article and Find Full Text PDFPulmonology
December 2025
Portuguese Society of Pulmonology (SPP), Lisbon, Portugal.
Background: Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection, hospitalisation and death in adults.
Methods: Based on evidence regarding the impact of RSV on adult populations at risk for severe infection and the efficacy and safety of RSV vaccines, the Portuguese Society of Pulmonology, the Portuguese Association of General and Family Medicine, the Portuguese Society of Cardiology, the Portuguese Society of Infectious Diseases and Clinical Microbiology, the Portuguese Society of Endocrinology, Diabetes and Metabolism, and the Portuguese Society of Internal Medicine endorses this position paper with recommendations to prevent RSV-associated disease and its complications in adults through vaccination.
Conclusion: The RSV vaccine is recommended for people aged ≥50 years with risk factors (chronic obstructive pulmonary disease, asthma, heart failure, coronary artery disease, diabetes, chronic kidney disease, chronic liver disease, immunocompromise, frailty, dementia, and residence in a nursing home) and all persons aged ≥60 years.
Microbiol Spectr
January 2025
Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.
Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.
View Article and Find Full Text PDFJ Virol
January 2025
MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
Janssen Research and Development, Beerse, Belgium.
Background: Vaccine co-administration can increase vaccination coverage. We assessed the safety, reactogenicity, and immunogenicity of concomitant administration of Ad26.COV2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!