Stenotrophomonas maltophilia is known to be of significance as opportunistic pathogen as well as a source of biocontrol and bioremediation activities. S. maltophilia strains have been isolated from rhizospheres, soil, clinical material, aquatic habitats, but little is known about Stenotrophomonas strains recovered from marine environments. During a survey of the biodiversity of Pseudomonas-like bacteria associated with deep-sea invertebrates six Stenotrophomonas strains were isolated from sponge, sea urchin, and ophiura specimens collected from differing Pacific areas, including the Philippine Sea, the Fiji Sea and the Bering Sea. 16S rRNA gene sequence analysis confirmed an assignment of marine isolates to the genus Stenotrophomonas as it placed four strains into the S. maltophilia CIP 60.77T cluster and two related to the S. rhizophila DSM 14405T. Together with a number of common characteristics typical of S. maltophilia and S. rhizophila marine isolates exhibited differences in pigmentation, a NaCl tolerance, a range of temperatures, which supported their growth, substrate utilization pattern, and antibiotics resistance. Strains displayed hemolytic and remarkable inhibitory activity against a number of fungal cultures and Gram-positive microorganisms, but very weak or none against Candida albicans. This is the first report on isolation, taxonomic characterization and antimicrobial activity of Stenotrophomonas strains isolated from deep-sea invertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-007-0324-8DOI Listing

Publication Analysis

Top Keywords

stenotrophomonas strains
20
strains isolated
16
deep-sea invertebrates
12
isolated deep-sea
8
invertebrates stenotrophomonas
8
marine isolates
8
strains
7
stenotrophomonas
6
occurrence antagonistic
4
antagonistic potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!