Glutamate receptor response properties of nociceptive synapses on neurokinin 1 receptor positive (NK1R+) lamina I neurons were determined 3 days after induction of chronic peripheral inflammation with Freund's Complete Adjuvant (CFA). A significant increase in the AMPAR/NMDAR ratio was found during inflammation, which was associated with a significant reduction in the quantal amplitude of NMDAR-mediated synaptic currents. A significant shortening of the quantal AMPA current decay, a greater inward rectification of the AMPAR-mediated eEPSC amplitude and an increased sensitivity to the Ca2+-permeable AMPAR channel blocker 1-naphthylacetyl spermine (NAS) was also observed, indicating an increase in the contribution of Ca2+-permeable AMPARs at this synapse during inflammation. Furthermore the reduced effectiveness of the NR2B-specific antagonist CP-101,606 on NMDAR-mediated eEPSCs together with a decrease in Mg2+ sensitivity suggests a down regulation of the highly Mg2+-sensitive and high conductance NR2B subunit at this synapse. These changes in glutamatergic receptor function during inflammation support the selective effectiveness of Ca2+-permeable AMPAR antagonists in inflammatory pain models and may underlie the reported ineffectiveness of NR2B antagonists in spinal antinociception.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375596PMC
http://dx.doi.org/10.1113/jphysiol.2007.145581DOI Listing

Publication Analysis

Top Keywords

nociceptive synapses
8
inflammatory pain
8
ca2+-permeable ampar
8
switch ca2+-permeable
4
ca2+-permeable ampa
4
ampa reduced
4
reduced nr2b
4
nr2b nmda
4
nmda receptor-mediated
4
receptor-mediated neurotransmission
4

Similar Publications

The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs.

View Article and Find Full Text PDF

An intra-brainstem circuitry for pain-induced inhibition of itch.

Neuroscience

January 2025

Center for Neuroscience, Indian Institute of Science, Bengaluru 560012, India. Electronic address:

Pain and itch are unpleasant and distinct sensations that give rise to behaviors such as reflexive withdrawal and scratching in humans and mice. Interestingly, it has been observed that pain modulates itch through the neural circuits housed in the brain and spinal cord. However, we have yet to fully understand the identities and mechanisms by which specific neural circuits mediate pain-induced modulation of itch.

View Article and Find Full Text PDF
Article Synopsis
  • The mechanisms behind emotional responses to chronic pain are not well understood.
  • In mice with chemotherapy-induced peripheral neuropathy (CIPN), licking affected areas becomes a strong coping mechanism, especially in response to cold stimuli.
  • Research identified the lateral parabrachial nucleus (LPBN) as crucial in managing this licking behavior by responding to pain signals from the spinal cord and brain, highlighting the complex interaction between pain and emotional responses.
View Article and Find Full Text PDF

Background: Chronic pain poses a clinical challenge due to its associated costly disability and treatment needs. Determining how pain transitions from acute to chronic is crucial for effective management. Upregulation of the chemokine C-X-C motif ligand 12 (CXCL12) in nociceptive pathway is associated with chronic pain.

View Article and Find Full Text PDF

Early-life experience influences subsequent maturation and function of the adult brain, sometimes even in a sex-specific manner, but underlying molecular mechanisms are poorly understood. We describe here how juvenile experience defines sexually dimorphic synaptic connectivity in the adult nervous system. Starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!