Sezary syndrome (SS) is a rare, aggressive CD4+ cutaneous T-cell lymphoma (CTCL); molecular traits differentiating SS from nonleukemic mycosis fungoides (MF) and from inflammatory skin diseases (ID) are not sufficiently characterized. Peripheral blood mononuclear cells (PBMC) of 10 SS patients and 10 healthy donors (HD) were screened by Affymetrix U133Plus2.0 chips for differential gene expression. Ten candidate genes were confirmed by qRT-PCR to be significantly overexpressed in CD4+ T cells of SS versus HD/ID. For easier clinical use, these genes were re-analyzed in PBMC; qRT-PCR confirmed five novel (DNM3, IGFL2, CDO1, NEDD4L, KLHDC5) and two known genes (PLS3, TNFSF11) to be significantly overexpressed in SS. Multiple logistic regression analysis revealed that CDO1 and DNM3 had the highest discriminative power in combination. Upon comparison of PBMC and skin samples of SS versus MF, CDO1 and DNM3 were found upregulated only in SS. Using anti-CDO1 antisera, differential expression of CDO1 protein was confirmed in SS CD4+ T cells. Interestingly, DNM3 and CDO1 are known to be regulated by SS-associated transcription factors TWIST1 and c-myb, respectively. Furthermore, CDO1 catalyzes taurine synthesis and taurine inhibits apoptosis and promotes chemoprotection. In summary, CDO1 and DNM3 may improve the diagnosis of SS and open novel clues to its pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.leu.2405044DOI Listing

Publication Analysis

Top Keywords

cdo1 dnm3
16
cutaneous t-cell
8
t-cell lymphoma
8
cdo1
8
cd4+ cells
8
dnm3
6
sézary syndrome
4
syndrome unique
4
unique cutaneous
4
lymphoma identified
4

Similar Publications

Sezary syndrome (SS) is a rare, aggressive CD4+ cutaneous T-cell lymphoma (CTCL); molecular traits differentiating SS from nonleukemic mycosis fungoides (MF) and from inflammatory skin diseases (ID) are not sufficiently characterized. Peripheral blood mononuclear cells (PBMC) of 10 SS patients and 10 healthy donors (HD) were screened by Affymetrix U133Plus2.0 chips for differential gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!