The development and validation of a microsphere immunoassay (MIA) to detect equine antibodies to the major structural proteins of equine arteritis virus (EAV) are described. The assay development process was based on the cloning and expression of genes for full-length individual major structural proteins (GP5 amino acids 1 to 255 [GP5(1-255)], M(1-162), and N(1-110)), as well as partial sequences of these structural proteins (GP5(1-116), GP5(75-112), GP5(55-98), M(88-162), and N(1-69)) that constituted putative antigenic regions. Purified recombinant viral proteins expressed in Escherichia coli were covalently bound to fluorescent polystyrene microspheres and analyzed with the Luminex xMap 100 instrument. Of the eight recombinant proteins, the highest concordance with the virus neutralization test (VNT) results was obtained with the partial GP5(55-98) protein. The MIA was validated by testing a total of 2,500 equine serum samples previously characterized by the VNT. With the use of an optimal median fluorescence intensity cutoff value of 992, the sensitivity and specificity of the assay were 92.6% and 92.9%, respectively. The GP5(55-98) MIA and VNT outcomes correlated significantly (r = 0.84; P < 0.0001). Although the GP5(55-98) MIA is less sensitive than the standard VNT, it has the potential to provide a rapid, convenient, and more economical test for screening equine sera for the presence of antibodies to EAV, with the VNT then being used as a confirmatory assay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2223870PMC
http://dx.doi.org/10.1128/CVI.00388-07DOI Listing

Publication Analysis

Top Keywords

structural proteins
12
equine arteritis
8
arteritis virus
8
virus neutralization
8
neutralization test
8
major structural
8
gp555-98 mia
8
equine
5
proteins
5
vnt
5

Similar Publications

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Background: Mucopolysaccharidosis (MPS) is a class of hereditary metabolic diseases that demonstrate itself by accumulating incompletely degraded glycosaminoglycans (GAGs). MPS are classified according to the kind(s) of stored GAG(s) and specific genetic/enzymatic defects. Despite the accumulation of the same type of GAG, two MPS diseases, Sanfilippo (MPS III) and Morquio (MPS IV), are further distinguished into subclasses based on different enzymes that are deficient.

View Article and Find Full Text PDF

VPO1 Promotes Programmed Necrosis of Cardiomyocytes in Rats with Chronic Heart Failure by Upregulating CYLD.

Front Biosci (Landmark Ed)

December 2024

Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.

Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.

View Article and Find Full Text PDF

Background: Gallstone formation is a common digestive ailment, with unclear mechanisms underlying its development. Dysfunction of the gallbladder smooth muscle (GSM) may play a crucial role, particularly with a high-fat diet (HFD). This study aimed to investigate the effects of an HFD on GSM and assess how it alters contractility through changes in the extracellular matrix (ECM).

View Article and Find Full Text PDF

It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!