The NS5A protein of hepatitis C virus (HCV) plays an important but undefined role in viral RNA replication. NS5A has been proposed to be a three-domain protein, and the crystal structure of the well-conserved amino-terminal domain I has been determined. The remaining two domains of NS5A, designated domains II and III, and their corresponding interdomain regions are poorly understood. We have conducted a detailed mutagenesis analysis of NS5A domains II and III using the genotype 1b HCV replicon system. The majority of the mutants containing 15 small (8- to 15-amino-acid) deletions analyzed were capable of efficient RNA replication. Only five deletion mutations yielded lethal phenotypes, and these were colinear, spanning a 56-amino-acid region within domain II. This region was further analyzed by combining triple and single alanine scanning mutagenesis to identify individual residues required for RNA replication. Based upon this analysis, 23 amino acids were identified that were found to be essential. In addition, two residues were identified that yielded a small colony phenotype while possessing only a moderate defect in RNA replication. These results indicate that the entire domain III region and large portions of domain II of the NS5A protein are not required for the function of NS5A in HCV RNA replication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224455 | PMC |
http://dx.doi.org/10.1128/JVI.00328-07 | DOI Listing |
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Institute of Virology, Philipps University Marburg, Marburg, Germany. Electronic address:
Orthoflaviviruses are emerging arthropod-borne pathogens whose replication cycle is tightly linked to host lipid metabolism. Previous lipidomic studies demonstrated that infection with the closely related hepatitis C virus (HCV) changes the fatty acid (FA) profile of several lipid classes. Lipids in HCV-infected cells had more very long-chain and desaturated FAs and viral replication relied on functional FA elongation and desaturation.
View Article and Find Full Text PDFVirology
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. Electronic address:
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, and reproductive failure. PCV3 Cap interacts with DExD/H-box helicase 36 (DHX36), a protein that functions primarily through regulating interferon (IFN)-β production. However, how the interaction between DHX36 and PCV3 Cap regulates viral replication remains unknown.
View Article and Find Full Text PDFViruses
January 2025
Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany.
The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!