Hepatitis E virus is a nonenveloped RNA virus. However, the single capsid protein resembles a typical glycoprotein in that it contains a signal sequence and potential glycosylation sites that are utilized when recombinant capsid protein is overexpressed in cell culture. In order to determine whether these unexpected observations were biologically relevant or were artifacts of overexpression, we analyzed capsid protein produced during a normal viral replication cycle. In vitro transcripts from an infectious cDNA clone mutated to eliminate potential glycosylation sites were transfected into cultured Huh-7 cells and into the livers of rhesus macaques. The mutations did not detectably affect genome replication or capsid protein synthesis in cell culture. However, none of the mutants infected rhesus macaques. Velocity sedimentation analyses of transfected cell lysates revealed that mutation of the first two glycosylation sites prevented virion assembly, whereas mutation of the third site permitted particle formation and RNA encapsidation, but the particles were not infectious. However, conservative mutations that did not destroy glycosylation motifs also prevented infection. Overall, the data suggested that the mutations were lethal because they perturbed protein structure rather than because they eliminated glycosylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224450 | PMC |
http://dx.doi.org/10.1128/JVI.01219-07 | DOI Listing |
Nucleic Acids Res
January 2025
Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA.
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers.
View Article and Find Full Text PDFBiotechnol J
January 2025
Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China. Electronic address:
Goose astrovirus (GAstV) poses a large threat to the goose industry in China, with two genotypes: goose astrovirus genotype 1 (GAstV-1) and GAstV-2. GAstV-2 causes gout in goslings; however, understanding of GAstV-1 is limited. In this study, the GAstV-1 strain JY202323, was isolated from dead goslings, and its complete genome sequence was obtained using next-generation sequencing.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA. Electronic address:
One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Key Laboratory of Exploration and Utilization of Aquatic genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. Electronic address:
Frog virus 3-like ranaviruses (FV3-like viruses), particularly FV3 (Frog virus 3), represent typical species within the genus Ranavirus, primarily infecting amphibians and reptiles, thereby posing serious threats to aquaculture and biodiversity conservation. We designed a pair of universal primers and a probe targeting the conserved region of the major capsid protein (MCP) genes of FV3-like viruses. By integrating recombinase-aided amplification (RAA) with lateral flow dipstick (LFD) technology and real-time fluorescence (RF) modification, we established RAA-LFD and RF-RAA assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!