AMPA-type glutamate receptors in the nucleus tractus solitarii (NTS) are necessary for the baroreceptor reflex, a primary mechanism for homeostatic regulation of blood pressure. Within NTS, the GluR1 subunit of the AMPA receptor is found primarily in dendritic spines. We previously showed that both GluR1 and dendritic spine density are increased in NTS of spontaneously hypertensive rats (SHRs). We hypothesize that both receptor and synaptic plasticity are induced by a sustained elevation in arterial pressure. To test the general nature of this hypothesis, we examined whether similar changes in GluR1 density are found in a renovascular model of hypertension, the DOCA-salt rat, and if these changes are preventable by normalizing blood pressure with hydralazine, a peripherally acting vasodilator. Using immunoperoxidase detection, GluR1 appears as small puncta at the light microscopic level, and is found in dendritic spines at the ultrastructural level. Following the development of hypertension, GluR1 spine and puncta counts were significantly greater in DOCA-salt rats than controls. Hydralazine treatment (4-5 weeks) prevented the development of hypertension in DOCA-salt rats and reduced blood pressure of SHRs to normotensive levels. The density of GluR1 puncta in the NTS was significantly reduced by hydralazine treatment in the SHR model. These results show that hypertension alters dendritic spines containing AMPA-type glutamate receptors within NTS, suggesting that adjustments in GluR1 expression within NTS are part of the synaptic adaptations to the hypertensive state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225988PMC
http://dx.doi.org/10.1016/j.brainres.2007.10.041DOI Listing

Publication Analysis

Top Keywords

blood pressure
12
dendritic spines
12
ampa receptor
8
glur1
8
nucleus tractus
8
tractus solitarii
8
ampa-type glutamate
8
glutamate receptors
8
model hypertension
8
hypertension doca-salt
8

Similar Publications

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

Importance: Hypertension is the primary cardiovascular risk factor in Africa. Recently revised World Health Organization guidelines recommend starting antihypertensive dual therapy; clinical efficacy and tolerability of low-dose triple combination remain unclear.

Objectives: To compare the effect of 3 treatment strategies on blood pressure control among persons with untreated hypertension in Africa.

View Article and Find Full Text PDF

Importance: Pediatric obesity and hypertension are highly correlated. To mitigate both conditions, provision of counseling on nutrition, lifestyle, and weight to children with high blood pressure (BP) measurements is recommended.

Objective: To examine racial and ethnic disparities in receipt of nutrition, lifestyle, and weight counseling among patients with high BP at pediatric primary care visits stratified by patients' weight status.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!