A high strength nanocomposite based on microcrystalline cellulose and polyurethane.

Biomacromolecules

Fibre and Polymer Technology, Royal Institute of Technology, KTH, 100 44 Stockholm, Sweden.

Published: December 2007

A high-strength elastomeric nanocomposite has successfully been prepared by dispersing microcrystalline cellulose in a polyurethane matrix. The resulting nanocomposites show increased strain-to-failure in addition to increased stiffness and strength compared to the unfilled polyurethane. The optimal composite contained 5 wt % cellulose. The average true strength for this composition was 257 MPa, compared with 39 MPa for the neat polyurethane, and showed the highest strain-to-failure. The improvements of stiffness, strength, as well as strain-to-failure are believed to be due to good interaction, by both covalent and hydrogen bonds, between the polyurethane and the cellulose nanofibrils.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm701061tDOI Listing

Publication Analysis

Top Keywords

microcrystalline cellulose
8
cellulose polyurethane
8
stiffness strength
8
polyurethane
5
high strength
4
strength nanocomposite
4
nanocomposite based
4
based microcrystalline
4
cellulose
4
polyurethane high-strength
4

Similar Publications

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

Alcoholysis of High-Solid xylose residue for methyl levulinate preparation and its kinetics.

Bioresour Technol

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China. Electronic address:

Achieving the efficient biomass alcoholysis to methyl levulinate (ML) under high solid content conditions and establishing its kinetic model are crucial, but remain challenging. Here, the alcoholysis of microcrystalline cellulose (MC) and xylose residue (XR) to ML under high solid content conditions using CuSO as a catalyst was reported. High yield (34.

View Article and Find Full Text PDF

Excipient lung disease (ELD) is a rare cause of pulmonary hypertension that occurs due to the intravenous injection of crushed tablets. We present the case of a healthcare professional in her late 30s who presented with a fever in the setting of a bacteraemia. During her hospital admission, she established a pattern of transient hypoxia and hypotension, with resolution without targeted management or clear cause identified.

View Article and Find Full Text PDF

Cellulose Based Nano-Scaffolds for Targeted Cancer Therapies: Current Status and Future Perspective.

Int J Nanomedicine

January 2025

Department of General Practice and Family Medicine, The Second Hospital of Jilin University, Changchun, 130000, People's Republic of China.

In the last few years, cellulose has garnered much interest for its application in drug delivery, especially in cancer therapy. It has special properties like biocompatibility, biodegradability, high porosity, and water permeability render it a good candidate for developing efficient carriers for anticancer agents. Cellulose based nanomaterials like cellulose nanofibers, bacterial cellulose, cellulose nanocrystals and microcrystalline cellulose as delivery vehicles for targeted drug delivery to cancer cells are reviewed.

View Article and Find Full Text PDF

Currently, the development of high-performance adsorbents for the removal of nanoplastics in complex aquatic environments is challenging. In this study, a functionalized polyethyleneimine-phosphorylated microcrystalline cellulose/MoS (PEI-PMCC/MoS) hybrid aerogel was prepared and applied to remove carboxyl-modified polystyrene (PS-COOH) nanoplastics from the aqueous solution. Benefiting from the introduced functional groups and the expanded lamellar structure in MoS nanosheets as well as the highly porous 3D structure of the aerogel, PEI-PMCC/MoS demonstrated high efficiency in PS-COOH nanoplastics removal, achieving a 402.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!