The evolution of marine demosponges has led to two basic life strategies: one involving close associations with large and diverse communities of microorganisms, termed high microbial abundance (HMA) species, and one that is essentially devoid of associated microorganisms, termed low microbial abundance (LMA) species. This dichotomy has previously been suggested to correlate with morphological differences, with HMA species having a denser mesohyl and a more complex aquiferous systems composed of longer and narrower water canals that should necessitate slower seawater filtration rates. We measured mesohyl density for a variety of HMA and LMA sponges in the Florida Keys, and seawater pumping rates for a select group of these sponges using an in situ dye technique. HMA sponges were substantially denser than LMA species, and had per unit volume pumping rates 52-94% slower than the LMA sponges. These density and pumping rate differences suggest that evolutionary differences between HMA and LMA species may have resulted in profound morphological and physiological differences between the two groups. The LMA sponge body plan moves large quantities of water through their porous tissues allowing them to rapidly acquire the small particulate organic matter (POM) that supplies the majority of their nutritional needs. In contrast, the HMA sponge body plan is suited to host large and tightly packed communities of microorganisms and has an aquiferous system that increases contact time between seawater and the sponge/microbial consortium that feeds on POM, dissolved organic matter and the raw inorganic materials for chemolithotrophic sponge symbionts. The two evolutionary patterns represent different, but equally successful patterns and illustrate how associated microorganisms can potentially have substantial effects on host evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-007-0910-0 | DOI Listing |
Sci Rep
January 2025
College of computer science and technology, China University of Petroleum (East China), No.66 Changjiang West Road, Huangdao, Qingdao, 266580, Shandong, China.
Addressing the issues of inadequate information exchange among subsequences in the operational time series of water injection pumps, leading to low accuracy and high false alarm rates in anomaly detection, this paper proposes a multidimensional time series anomaly detection method for water injection pump operations, leveraging Long Short-Term Memory Autoencoder augmented with Attention Mechanism (LSTMA-AE) and mechanistic constraints. The LSTMA-AE framework encompasses three primary modules: a Time Feature Extraction Module (Encoder), an Attention Layer, and a Data Reconstruction Module (Decoder). The Encoder captures temporal dependencies and features within the input sequences, mapping the input data into a higher-dimensional space.
View Article and Find Full Text PDFbioRxiv
December 2024
Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303.
It is currently estimated that every 15 minutes an infant is born with opioid use disorder and undergoes intense early life trauma due to opioid withdrawal. Clinical research on the long-term consequences of gestational opioid exposure reports increased rates of social, conduct, and emotional disorders in these children. Here, we investigate the impact of perinatal opioid exposure (POE) on behaviors associated with anhedonia and stress in male and female Sprague Dawley rats.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran.
In this paper, a hybrid optimization method based on a technique for order of preference by similarity to an ideal solution (TOPSIS) is used for the simultaneous site selection and sizing of a hybrid photovoltaic (PV) water pumping/diesel generator energy system. Various sites in Iran are analyzed for the establishment of the photovoltaic water pumping power plants. Key geographical and climatic criteria are used for optimal site selection across different sites.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2025
Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India. Electronic address:
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc.
View Article and Find Full Text PDFArtif Organs
January 2025
BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.
Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!