7,8-Dihydro-8-oxoguanine (8-oxoG) is a well-known oxidative lesion in DNA and is related to carcinogenesis and ageing processes. Misincorporation of dATP opposite to 8-oxoG leads to G --> T transversion mutations. DNA sequence has been proved as an important factor influencing the replication and enzymatic repair of various types of damages. To explore the influence of sequence effect on the properties of translesion synthesis (TLS) polymerase bypass of 8-oxoG, oligonucleotides with an 8-oxoG in different sequence contexts were used. We conclude that the 5'-nearest base next to 8-oxoG has significant effects in the G --> T mutation by hpoleta.

Download full-text PDF

Source
http://dx.doi.org/10.1093/nass/nrm025DOI Listing

Publication Analysis

Top Keywords

8-oxog
5
nucleotide incorporation
4
incorporation 78-dihydro-8-oxoguanine
4
78-dihydro-8-oxoguanine influenced
4
influenced neighboring
4
neighboring base
4
base sequences
4
sequences tls
4
tls dna
4
dna polymerase
4

Similar Publications

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF

Iron regulatory protein 1-deficient mice exhibit hypospermatogenesis.

J Biol Chem

December 2024

Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany; Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany. Electronic address:

Imbalances in testicular iron levels are linked to compromised sperm production and male infertility. Iron regulatory proteins (IRP) 1 and 2 play crucial roles in cellular iron regulation. We investigated the role of IRP1 on spermatogenesis using Irp1-deficient mice (Irp1).

View Article and Find Full Text PDF

Cell-Specific Control of Mammalian Gene Expression Using DNA Repair Inducible Ribozyme Switches.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha, 410082, China.

The ability to control gene expression is vital for elucidating gene functions and developing next-generation therapeutics. Current techniques are challenged by the lack of cell-specific control designs or immunogenicity risk from foreign proteins. We develop a DNA repair inducible ribozyme switch that enables cell-specific control of gene expression in cells and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • OGG1 (8-oxoguanine DNA glycosylase-1) is essential for DNA repair, particularly in removing damaged DNA caused by oxidation, and its deficiency in mice leads to increased obesity and metabolic issues from a high-fat diet (HFD).
  • The study found that OGG1-deficient mice had greater obesity and impaired insulin action compared to wild-type mice, underscoring OGG1's significant role in metabolism and insulin sensitivity.
  • Targeting OGG1 to mitochondria showed protective effects against HFD-induced obesity and insulin resistance, highlighting potential mechanisms that could inform future therapeutic strategies.
View Article and Find Full Text PDF

Bulk increases in nucleobase oxidation, most commonly manifesting as the guanine (G) nucleobase modification 8-oxo-7,8-dihydroguanine (8-oxoG), have been linked to several disease pathologies. Elucidating the effects of RNA oxidation on cellular homoeostasis is limited by a lack of effective tools for detecting specific regions modified with 8-oxoG. Building on a previously published method for studying 8-oxoG in DNA, we developed ChLoRox-Seq, which works by covalently functionalizing 8-oxoG sites in RNA with biotin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!