Computational design of surface charge-charge interactions has been demonstrated to be an effective way to increase both the thermostability and the stability of proteins. To test the robustness of this approach for proteins with predominantly beta-sheet secondary structure, the chicken isoform of the Fyn SH3 domain was used as a model system. Computational analysis of the optimal distribution of surface charges showed that the increase in favorable energy per substitution begins to level off at five substitutions; hence, the designed Fyn sequence contained four charge reversals at existing charged positions and one introduction of a new charge. Three additional variants were also constructed to explore stepwise contributions of these substitutions to Fyn stability. The thermodynamic stabilities of the variants were experimentally characterized using differential scanning calorimetry and far-UV circular dichroism spectroscopy and are in very good agreement with theoretical predictions from the model. The designed sequence was found to have increased the melting temperature, DeltaT (m) = 12.3 +/- 0.2 degrees C, and stability, DeltaDeltaG(25 degrees C) = 7.1 +/- 2.2 kJ/mol, relative to the wild-type protein. The experimental data suggest that a significant increase in stability can be achieved through a very small number of amino acid substitutions. Consistent with a number of recent studies, the presented results clearly argue for a seminal role of surface charge-charge interactions in determining protein stability and suggest that the optimization of surface interactions can be an attractive strategy to complement algorithms optimizing interactions in the protein core to further enhance protein stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2222822 | PMC |
http://dx.doi.org/10.1110/ps.073091607 | DOI Listing |
JMIR Med Educ
January 2025
Digital Society Initiative, University of Zurich, Zurich, Switzerland.
Background: The increased use of digital data in health research demands interdisciplinary collaborations to address its methodological complexities and challenges. This often entails merging the linear deductive approach of health research with the explorative iterative approach of data science. However, there is a lack of structured teaching courses and guidance on how to effectively and constructively bridge different disciplines and research approaches.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden.
Understanding and controlling molecular motions is of pivotal importance for designing molecular machinery and functional molecular systems, capable of performing complex tasks. Herein, we report a comprehensive theoretical study to elucidate the dynamic behavior of a bis(benzoxazole)-based overcrowded alkene displaying several coupled and uncoupled molecular motions. The benzoxazole moieties give rise to 4 different stable conformers that interconvert through single-bond rotations.
View Article and Find Full Text PDFPLoS One
January 2025
Computer Engineering, CCSIT, King Faisal University, Al Hufuf, Kingdom of Saudi Arabia.
This paper presents a low-power, second-order composite source-follower-based filter architecture optimized for biomedical signal processing, particularly ECG and EEG applications. Source-follower-based filters are recommended in the literature for high-frequency applications due to their lower power consumption when compared to filters with alternative topologies. However, they are not suitable for biomedical applications requiring low cutoff frequencies as they are designed to operate in the saturation region.
View Article and Find Full Text PDFPLoS One
January 2025
LP2N, Laboratoire Photonique Numérique et Nanosciences, University Bordeaux, Talence, France.
Recent advances in bioengineering have made it possible to develop increasingly complex biological systems to recapitulate organ functions as closely as possible in vitro. Monitoring the assembly and growth of multi-cellular aggregates, micro-tissues or organoids and extracting quantitative information is a crucial but challenging task required to decipher the underlying morphogenetic mechanisms. We present here an imaging platform designed to be accommodated inside an incubator which provides high-throughput monitoring of cell assemblies over days and weeks.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
Conventional methods for extracting rare earth metals (REMs) from mined mineral ores are inefficient, expensive, and environmentally damaging. Recent discovery of lanmodulin (LanM), a protein that coordinates REMs with high-affinity and selectivity over competing ions, provides inspiration for new REM refinement methods. Here, we used quantum mechanical (QM) methods to investigate trivalent lanthanide cation (Ln) interactions with coordination systems representing bulk solvent water and protein binding sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!