A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anatomic structural study of cerebellopontine angle via endoscope. | LitMetric

Anatomic structural study of cerebellopontine angle via endoscope.

Chin Med J (Engl)

Department of Otolaryngology, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing 100730, China.

Published: October 2007

Background: Minimally invasive surgery in skull base relying on searching for possible anatomic basis for endoscopic technology is controversial. The objective of this study was to observe the spatial relationships between main blood vessels and nerves in the cerebellopontine angle area and provide anatomic basis for lateral and posterior skull base minimally invasive surgery via endoscopic retrosigmoid keyhole approach.

Methods: This study was conducted on thirty dried adult skulls to measure the spatial relationships among the surface bony marks of posterior cranial fossa, and to locate the most appropriate drilling area for retrosigmoid keyhole approach. In addition, we used 10 formaldehyde-fixed adult cadaver specimens for simulating endoscopic retrosigmoid approach to determine the visible scope.

Results: The midpoint between the mastoid tip and the asterion was the best drilling point for retrosigmoid approach. A hole centered on this point with the 2.0 cm in diameter was suitable for exposing the related structures in the cerebellopontine angle. Retrosigmoid keyhole approach can decrease the pressure on the cerebellum and expose the related structures effectively which include facial nerve, vestibulocochlear nerve, trigeminal nerve, glossopharyngeal nerve, vagus nerve, accessory nerve, hypoglossal nerve, anterior inferior cerebellar artery, posterior inferior cerebellar artery and labyrinthine artery, etc.

Conclusions: Exact location on endoscope retrosigmoid approach can avoid dragging cerebellum during the minimally invasive surgery. The application of retrosigmoid keyhole approach will extend the application of endoscopic technology.

Download full-text PDF

Source

Publication Analysis

Top Keywords

retrosigmoid keyhole
16
cerebellopontine angle
12
minimally invasive
12
invasive surgery
12
keyhole approach
12
retrosigmoid approach
12
skull base
8
anatomic basis
8
endoscopic technology
8
spatial relationships
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!