The objective of this study was to explore the potential of near-infrared spectroscopy for determining the compositional quality properties of barley as a feedstock for fuel ethanol production and to compare the prediction accuracy between calibration models obtained using a Fourier transform near-infrared system (FT-NIR) and a dispersive near-infrared system. The total sample set contained 206 samples of three types of barley, hull-less, malt, and hulled varieties, which were grown at various locations in the eastern U.S. from 2002 to 2005 years. A new hull-less barley variety, Doyce, which was specially bred for potential use in ethanol production, was included in the sample set. One hundred and thirty-eight barley samples were used for calibration and sixty-eight were used for validation. Ground barley samples were scanned on both a FTNIR spectrometer (10 000 to 4000 cm(-1) at 4 cm(-1) resolution) and a dispersive NIR spectrometer (400 to 2498 nm at 10 nm resolution), respectively. Six grain components, moisture, starch, beta-glucan, protein, oil, and ash content, were analyzed as parameters of barley quality. Principal component analysis showed that barley samples could be classified by their types: hull-less, malt, and hulled. Partial least squares regression indicated that both FT-NIR and dispersive NIR spectroscopy have the potential to determine quality properties of barley with an acceptable accuracy, except for beta-glucan content. There was no predictive advantage in using a high-resolution FT-NIR instrument over a dispersive system for most components of barley.

Download full-text PDF

Source
http://dx.doi.org/10.1366/000370207782597148DOI Listing

Publication Analysis

Top Keywords

ethanol production
12
barley samples
12
barley
10
ground barley
8
barley feedstock
8
feedstock fuel
8
fuel ethanol
8
quality properties
8
properties barley
8
near-infrared system
8

Similar Publications

Insights of cellular and molecular changes in sugarcane response to oxidative signaling.

BMC Plant Biol

January 2025

Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.

Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.

View Article and Find Full Text PDF

Potential-resolved electrochemiluminescent immunoassay based on dual co-reactants regulation.

Biosens Bioelectron

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. Electronic address:

Multi-signal-based self-calibrating biosensors have become a research focus due to their superior accuracy and sensitivity in recent years. Herein, the potential-resolved differential ECL immunoassay based on dual co-reactants regulation was developed. Meso-tetra(4-carboxyphenyl)porphyrin (TCPP) functionalized zirconium dioxide (ZrO) composites (TCPP-ZrO) was first synthesized using TCPP as the luminophore and ZrO as the enhancer and stabilizer.

View Article and Find Full Text PDF

Cataracts are significant causes of blindness, closely linked to prolonged hypercholesterolemia. While saffron has the potential for eye health, its effects on lens lesions remain understudied. This study aimed to investigate the effect of saffron on the lens changes in atherosclerotic-induced New Zealand white rabbits (NZWR).

View Article and Find Full Text PDF

A simple, rapid, and reproducible high-performance liquid chromatography (HPLC) method has been developed and validated for the determination of β-sitosterol in the pharmaceutical dosage form of moist exposed burn ointment (MEBO). This method involved an effective sample procedure for extraction of β-sitosterol from MEBO using an alkali saponification agent composed of 0.8 N ethanolic NaOH and diethyl ether.

View Article and Find Full Text PDF

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!