The putative two-pore Ca(2+) channel TPC1 has been suggested to be involved in responses to abiotic and biotic stresses. We show that AtTPC1 co-localizes with the K(+)-selective channel AtTPK1 in the vacuolar membrane. Loss of AtTPC1 abolished Ca(2+)-activated slow vacuolar (SV) currents, which were increased in AtTPC1-over-expressing Arabidopsis compared to the wild-type. A Ca(2+)-insensitive vacuolar cation channel, as yet uncharacterized, could be resolved in tpc1-2 knockout plants. The kinetics of ABA- and CO(2)-induced stomatal closure were similar in wild-type and tpc1-2 knockout plants, excluding a role of SV channels in guard-cell signalling in response to these physiological stimuli. ABA-, K(+)-, and Ca(2+)-dependent root growth phenotypes were not changed in tpc1-2 compared to wild-type plants. Given the permeability of SV channels to mono- and divalent cations, the question arises as to whether TPC1 in vivo represents a pathway for Ca(2+) entry into the cytosol. Ca(2+) responses as measured in aequorin-expressing wild-type, tpc1-2 knockout and TPC1-over-expressing plants disprove a contribution of TPC1 to any of the stimulus-induced Ca(2+) signals tested, including abiotic stresses (cold, hyperosmotic, salt and oxidative), elevation in extracellular Ca(2+) concentration and biotic factors (elf18, flg22). In good agreement, stimulus- and Ca(2+)-dependent gene activation was not affected by alterations in TPC1 expression. Together with our finding that the loss of TPC1 did not change the activity of hyperpolarization-activated Ca(2+)-permeable channels in the plasma membrane, we conclude that TPC1, under physiological conditions, functions as a vacuolar cation channel without a major impact on cytosolic Ca(2+) homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2007.03342.x | DOI Listing |
Int J Phytoremediation
December 2024
College of Resources and Environment, Yunnan Agricultural University, Kunming, P.R. China.
Lead (Pb) pollution in soil affects growth of plants. Plants' endogenous hormones play an important role in resistance to Pb of plant. In order to explore the hormone-based mechanisms of Pb accumulationin in hyperaccumulator , a pot experiment was conducted to analyze the contents of endogenous hormones (auxin, gibberellin, abscisic acid, and cytokinin) and related genes expressions, and Pb contents of , as well as the transporter (cation exchangers (CAX), heavy metal ATPases (HMA), and ATP-binding cassette (ABC)) concentrations under foliar spraying of indoleacetic acid (IAA).
View Article and Find Full Text PDFEur Heart J Case Rep
December 2024
Department of Cardiology, Tokyo Metropolitan Police Hospital, 4-22-1 Nakano, Nakano, Tokyo 164-8541, Japan.
Background: Drug-induced phospholipidosis (DIPL) is an acquired lysosomal storage disorder characterized by the accumulation of lamellar bodies and phospholipids, typically associated with the use of cationic amphiphilic drugs (CADs). Over 200 marketed CADs, including widely prescribed β-blockers, have the potential to induce phospholipid deposition in various organs. In rare cases, DIPL may lead to secondary cardiomyopathy.
View Article and Find Full Text PDFNat Commun
November 2024
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Proc Natl Acad Sci U S A
November 2024
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112.
malaria parasites invade and multiply inside red blood cells (RBCs), the most iron-rich compartment in humans. Like all cells, requires nutritional iron to support essential metabolic pathways, but the critical mechanisms of iron acquisition and trafficking during RBC infection have remained obscure. Parasites internalize and liberate massive amounts of heme during large-scale digestion of RBC hemoglobin within an acidic food vacuole (FV) but lack a heme oxygenase to release porphyrin-bound iron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!