This study was undertaken to investigate the effect of co-administration of valproic acid and acyclovir on the pharmacokinetic parameters of each other. Fifteen white New Zealand rabbits were divided into three groups: A, B and C. Group A received acyclovir only, group B received valproic acid only and group C received a combination of acyclovir and valproic acid. In a cross-over design, the intravenous route was studied first, followed by the oral route after a 2-week wash-out period. Blood samples were drawn over 10 hr and the pharmacokinetic parameters were derived from the concentrations. After intravenous administration, the area under the plasma concentration time curve and plasma concentrations of acyclovir in group C were higher than in group A, while the volume of distribution and plasma clearance of acyclovir in group C were only 12.8% and 10.36% of those of group A, respectively. A similar trend was observed after oral administration. However, the bioavailability (F) of acyclovir was 8.4% in group A versus 1.5% in group C. In addition, the concentrations and kinetic parameters of valproic acid between the two groups after oral and intravenous administration were not different. In conclusion, co-administration of single doses of acyclovir and valproic acid led to reduced oral bioavailability of acyclovir, but increased concentrations of acyclovir due to reduced volume of distribution and clearance. These observations call for a cautious approach to the concomitant use of the two drugs until human studies are done.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-7843.2007.00134.x | DOI Listing |
Front Neural Circuits
December 2024
Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt.
Autism spectrum disorder (ASD) is a group of severe neurodevelopmental disorders. This study aimed to elucidate the potential ameliorating effect of postnatal administration of MSCs-derived Exo in a rat model of ASD. Male pups were divided into control (Cont), (VPA); pups of pregnant rats injected with VPA subcutaneously (S.
View Article and Find Full Text PDFDrugs Real World Outcomes
January 2025
Kabul University of Medical Sciences, Kabul, Afghanistan.
Anti-seizure medications (ASMs) are specific types of anticonvulsants used to treat epileptic seizures. However, several studies have shown an association between ASMs and an increased risk of hematological disorders, such as thrombocytopenia, aplastic anemia, and platelet function disorders leading to prolonged bleeding times. This review explores the existing literature on this topic, investigating a wide variety of ASMs, ranging from first-generation medications to newer ones.
View Article and Find Full Text PDFJ Physiol
January 2025
Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa Ver, México.
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition affecting a substantial number of children globally, characterized by diverse aetiologies, including genetic and environmental factors. Emerging research suggests that neurovascular dysregulation during development could significantly contribute to autism. This review synthesizes the potential role of vascular abnormalities in the pathogenesis of ASD and explores insights from studies on valproic acid (VPA) exposure during neural tube development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!