This review summarizes information concerning the association of the human flavin-containing monooxygenase 3 (FMO3) and human diseases. Human FMO3 oxygenates a wide variety of nucleophilic heteroatom-containing xenobiotics, including endogenous substrates and various clinically important drugs. In this article, the authors discuss the association of FMO3 with human disease, including: i) direct association of FMO3 genetic mutations to human genetic disease; ii) association of FMO3 genetic polymorphism to altered drug metabolism and, therefore, indirect association of FMO3 with drug therapeutic efficacy of human disease; and iii) the potential impact and/or effect of FMO3 transcriptional regulation during disease states. Even though many studies discussed for the latter two points are at a preliminary stage and require much more research to bring to a definite conclusion, the authors include these studies to stimulate general interest and invite further discussion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17425255.3.6.831 | DOI Listing |
Mol Genet Genomics
December 2024
Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK.
Flavin-containing monooxygenases (FMOs) are present in most organisms including plants, fungi, bacteria, invertebrates and vertebrates, where they catalyse the oxidative metabolism of a range of xenobiotics and endogenous metabolites. FMOs have been associated with ageing and longevity in the mouse and in C. elegans.
View Article and Find Full Text PDFBMC Oral Health
November 2024
Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
Enzyme Microb Technol
January 2025
Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea. Electronic address:
Indigo is a unique blue dye that has been used in the textile industry for centuries and is currently mass-produced commercially through chemical synthesis. However, the use of toxic substrates and reducing agents for chemical synthesis is associated with environmental concerns, necessitating the development of eco-friendly alternatives based on microbial production. In this study, a robust industrial strategy for indigo production was developed using Pseudomonas putida KT2440 as the host strain, which is characterized by its excellent ability to degrade aromatic compounds and high resistance to environmental stress.
View Article and Find Full Text PDFCommun Biol
August 2024
Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
The kidney is vulnerable to ischemia and reperfusion (I/R) injury that can be fatal after major surgery. Currently, there are no effective treatments for I/R-induced kidney injury. Trimethylamine N-oxide (TMAO) is a gut-derived metabolite linked to many diseases, but its role in I/R-induced kidney injury remains unclear.
View Article and Find Full Text PDFMol Med
August 2024
Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
Background: Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems.
Main Body Of The Manuscript: In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!