Conventional liposome performance and evaluation: lessons from the development of Vescan.

J Liposome Res

Gilead Sciences Inc., San Dimas, California, USA.

Published: January 2008

In the early 1980s, Vestar Inc., a company founded on the basis of science developed by the California Institute of Technology and the City of Hope, brought into development an imaging agent based on liposome encapsulated (111)In(3+). This agent, named Vescan, together with the gamma ray perturbed angular correlation spectroscopy technique to examine liposome integrity, was envisioned as a broadly applicable in vivo tumor diagnostic agent. While not ultimately commercialized, the agent was used to successfully image a variety of tumors, and was evaluated in late-stage clinical trials. Lessons learned from the formulation and process development of this product, and the wealth of non-clinical and clinical results, revealed valuable information about the properties of stable, RES avoiding conventional liposomes. This technology ultimately would lead (at NeXstar Pharmaceuticals and, later, at Gilead Sciences) to the technology that created commercialized liposomal products such as AmBisome and DaunoXome as well as other development stage product candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08982100701527981DOI Listing

Publication Analysis

Top Keywords

conventional liposome
4
liposome performance
4
performance evaluation
4
evaluation lessons
4
development
4
lessons development
4
development vescan
4
vescan early
4
early 1980s
4
1980s vestar
4

Similar Publications

Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting.

View Article and Find Full Text PDF

Psoriasis, a chronic autoimmune and non-communicable skin disease, affects 2-3% of the global population, creating a significant financial burden on healthcare systems worldwide. Treatment approaches are categorized based on disease severity, with first-line therapy focusing on topical treatments and second-line therapy encompassing phototherapy, systemic therapy, and biological therapy. Transdermal drug delivery methods present a promising alternative by enhancing drug absorption through the skin, potentially improving therapeutic outcomes while minimizing systemic adverse effects.

View Article and Find Full Text PDF

Magnetoliposomes containing magnetite, soy lecithin, stigmasterol, and beta-sitosterol of the mean size minor than 160 nm were obtained by a scalable and green process using autoclave and sonication without organic solvents. The formation, size of the liposome, linkage, and encapsulation of the magnetite were evaluated by Cryo-TEM. The stability of magnetoliposomes after storage for 6 months at 4 °C was improved by liposome size, the ability of soy lecithin to preserve the magnetite phase against oxidation, pH, polydispersity index, and zeta potential.

View Article and Find Full Text PDF

Tofacitinib in focus: Fascinating voyage from conventional formulations to novel delivery systems.

Int J Pharm

January 2025

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India. Electronic address:

Tofacitinib, a Janus kinase (JAK) inhibitor, has emerged as a primary therapeutic agent for managing autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, dermatitis and ulcerative colitis. By inhibiting the phosphorylation of JAK enzymes, tofacitinib prevents their activation within the JAK-STAT signaling pathway, which is vital for inflammatory responses. However, the tofacitinib delivery presents significant challenges, including pH-dependent solubility, poor permeability and susceptibility to oral degradation.

View Article and Find Full Text PDF

This research demonstrates the design and development of a novel dual-targeting, pH-sensitive liposomal (pSL) formulation of 5-Fluorouracil (5-FU), , (5-FU-iRGD-FA-pSL) to manage breast cancer (BC). The motivation to explore this formulation is to overcome the challenges of systemic toxicity and non-specific targeting of 5-FU, a conventional chemotherapeutic agent. The proposed formulation also combines folic acid (FA) and iRGD peptides as targeting ligands to enhance tumor cell specificity and penetration, while the pH-sensitive liposomes ensure the controlled drug release in the acidic tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!