An efficient gene transfer into target tissues and cells is needed for safe and effective treatment of genetic diseases like cancer. In this paper, we describe the development of a transport system and show its ability for transporting plasmids. This non-viral peptide-based BioShuttle-mediated transfer system consists of a nuclear localization address sequence realizing the delivery of the plasmid phNIS-IRES-EGFP coding for two independent reporter genes into nuclei of HeLa cells. The quantification of the transfer efficiency was achieved by measurements of the sodium iodide symporter activity. EGFP gene expression was measured with Confocal Laser Scanning Microscopy and quantified with biostatistical methods by analysis of the frequency of the amplitude distribution in the CLSM images. The results demonstrate that the "BioShuttle"-Technology is an appropriate tool for an effective transfer of genetic material carried by a plasmid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2062513PMC
http://dx.doi.org/10.7150/ijms.4.267DOI Listing

Publication Analysis

Top Keywords

transfer
5
bioshuttle-mediated plasmid
4
plasmid transfer
4
transfer efficient
4
efficient gene
4
gene transfer
4
transfer target
4
target tissues
4
tissues cells
4
cells needed
4

Similar Publications

Introduction: Optimal hospital bed utilization requires innovative patient care models. We studied a novel hospitalist model utilizing telemedicine to facilitate collaboration with affiliated emergency departments (EDs) and support medical triage and care of ED patients with high likelihood of hospital admission.

Methods: Telehospitalists based at a tertiary care facility collaborated with four community EDs in the same healthcare network between January 1, 2022, and April 30, 2023.

View Article and Find Full Text PDF

Transcription coactivator YAP1 promotes CCND1/CDK6 expression, stimulating cell proliferation in cloned cattle placentas.

Zool Res

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.

Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.

View Article and Find Full Text PDF

Aim: Vascularized lymph node transfer (VLNT) accelerates growth factor secretion, lymphatic endothelial cell migration toward the interstitial flow and lymphagiogenesis in a multidirectional pattern. Our observational study aimed to examine the hypothesis that nanofibrillar collagen scaffolds (NCS) combined with VLNT can provide guided lymphagiogenesis creating long-lasting lymphatic pathways.

Methods: Twenty-four patients (21 female, 3 male) underwent a lymphatic microsurgery for upper ( = 11) or lower ( = 13) limb secondary lymphedema and completed at least 18 months follow-up were selected and equally divided in 2 groups; Group-A underwent VLNT, Group-B underwent combined VLNT and NCS procedure.

View Article and Find Full Text PDF

Magnetophononics and the chiral phonon misnomer.

PNAS Nexus

January 2025

The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.

The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.

View Article and Find Full Text PDF

Background: Immune-mediated necrotizing myopathy (IMNM) is a type of autoimmune myositis. Anti-signal recognition particle (SRP) antibodies are highly specific to this disease.

Case: A 76-year-old woman presented with a 4-month history of acute progressive limb muscle weakness and dysphagia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!