We demonstrate RF sputtered, non-epitaxially-grown semiconductor nanocrystallite-doped silica films for mode locking a Cr:forsterite laser. We controlled the size and the optical properties of the nanocrystallites by varying the ratio of InAs to SiO(2) during fabrication. Femtosecond pump-probe measurements were performed to characterize the nonlinear optical properties of these films, revealing their lower saturation fluences. Using the InAs-doped silica films as saturable absorbers permitted self-starting Kerr-lens mode locking (KLM), generating pulses of 25-fs duration with 91-nm spectral bandwidth at 1.3 microm . We also describe saturable-absorber mode-locked operation without KLM and investigate its dependence on intracavity dispersion.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.27.001564DOI Listing

Publication Analysis

Top Keywords

mode locking
12
silica films
12
locking crforsterite
8
crforsterite laser
8
optical properties
8
self-starting mode
4
laser non-epitaxially-grown
4
non-epitaxially-grown semiconductor-doped
4
semiconductor-doped silica
4
films
4

Similar Publications

Observation of Optical Chaotic Solitons and Modulated Subharmonic Route to Chaos in Mode-Locked Laser.

Phys Rev Lett

December 2024

East China Normal University, State Key Laboratory of Precision Spectroscopy, and Hainan Institute, Shanghai, China.

We reveal a new scenario for the transition of solitons to chaos in a mode-locked fiber laser: the modulated subharmonic route. Its universality is confirmed in two different laser configurations, namely, a figure-of-eight and a ring laser. Numerical simulations of the laser models agree well with the experiments.

View Article and Find Full Text PDF

Micromirror technology is one of the current research hotspots. In this work, what we believe to be a novel electrostatic 2-DOF micromirror structure with double-biased torsional axes is proposed. By introducing internal resonance, synchronous motions of the two axes with a locked frequency ratio under a single driving force were achieved within a wide frequency range.

View Article and Find Full Text PDF

Wave mixing (WM) techniques are crucial for applications such as supercontinuum generation, frequency conversion, and high-dimensional quantum encoding. However, their efficiency is often limited by complex phase-matching requirements, and current insights into phase-matching mechanisms for high-order WM remain limited. To address this, compact optical path configurations with high-peak-power, synchronous, multicolor ultrafast laser sources are needed to enhance high-order wave-mixing efficiency.

View Article and Find Full Text PDF

We propose and demonstrate an ultra-wide tunable mode-locked all-fiber laser based on nonlinear amplifying loop mirror (NALM) with the output of cylindrical vector beams (CVBs). The tuning range covers from 1029 nm to 1098 nm through the intracavity nonlinear polarization evolution (NPE) filter effect. The switchable CVBs between radially and azimuthally polarized beams with mode purity above 90% are generated by incorporating a broadband few-mode long-period fiber grating (LPFG).

View Article and Find Full Text PDF

Large energy single-frequency nanosecond (ns) near-infrared light source is an essential device in the field of the remote chemical analysis based on the laser-induced breakdown spectroscopy (LIBS). In this paper, a large energy single-frequency ns 824 nm light source with high repetition rate is presented, which is generated from a seed-injection locked optical parametric oscillator (OPO). By optimizing the spot radius of the pump laser and the mode-matching between the pump laser and signal light, the optical parametric generation (OPG) process is effectively eliminated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!