We study four-wave mixing between pulses in two subchannels of a quasi-linear 40-Gbit/s subchannel-multiplexed system. For a pseudorandom bit string there are resonances in the mean of the ghost pulse energy and in the jitter of the energy in the marks as functions of the subchannel frequency spacing. However, away from these resonances the effect of four-wave mixing decreases as the subchannel spacing increases, permitting propagation over longer distances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.27.001235 | DOI Listing |
Light Sci Appl
January 2025
Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.
Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.
View Article and Find Full Text PDFWe report photon-phonon dressing quantization dependency on polarization. Destructive dressing polarization quantization is exhibited in fluorescence (FL) for narrowband signals, while constructive dominant dressing quantization is exhibited in fluorescence (FL) for broadband signals due to phase perturbation. Furthermore, constructive polarization quantization results due to coexistence of generation and dressing effects in strong and competitive Rabi frequency.
View Article and Find Full Text PDFAsia Pac J Public Health
December 2024
The Tokyo Foundation for Policy Research, Tokyo, Japan.
Few longitudinal studies have examined the impact of the COVID-19 pandemic on personal behaviors. This study investigated changes in four social behaviors among the Japanese public during and after the COVID-19 pandemic, using four-wave longitudinal data (2020-2023) from the Japan COVID-19 and Society Internet Survey (JACSIS). In total, 8622 respondents continuously participated in the surveys.
View Article and Find Full Text PDFMultiple coherent radiations are achieved in a water-3-aminopropanol (3AP) mixed solution through cascaded four-wave mixing (C-FWM) and cascaded Stokes (C-Stokes) processes, both driven by stimulated Raman scattering (SRS) in this work. The O-H vibration peak from water is replaced by the emergence of the -NH symmetric stretching Raman peaks from 3AP, with intensity approaching that of the -CH symmetric stretching peak. The dual-wavelength SRS signals for the -NH and -CH stretching vibrations have a relatively small frequency interval of about 400 cm (16 nm).
View Article and Find Full Text PDFSci Adv
December 2024
Department of Electronic Engineering, Tsinghua University, Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, China.
Leveraging the unique properties of quantum entanglement, quantum entanglement distribution networks support multiple quantum information applications and are essential to the development of quantum networks. However, practical implementation poses fundamental challenges to network scalability and flexibility. Here, we propose a reconfigurable entanglement distribution network scheme based on tunable multipump excitation of a spontaneous four-wave mixing (SFWM) source and a time-sharing method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!