We propose a simple optical system to compensate for chromatic distortion that occurs during fan-out of femtosecond pulses by diffractive optics. The proposed system comprises a pair of diffractive elements, one for splitting an incoming pulse and the other for focusing the split pulses. With an appropriate separation between the elements, chromatic distortion resulting from the spectral bandwidth of a femtosecond pulse is removed, and an array of focused pulses with the same dimensions can be obtained. The theory has been verified through optical and processing experiments with 100-fs, 800-nm pulses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.27.000969 | DOI Listing |
Photosynth Res
January 2025
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia, 119991.
The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Division of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.
Controlled breakdown has emerged as an effective method for fabricating solid-state nanopores in thin suspended dielectric membranes for various biomolecular sensing applications. On an unpatterned membrane, the site of nanopore formation by controlled breakdown is random. Nanopore formation on a specific site on the membrane has previously been realized using local thinning of the membrane by lithographic processes or laser-assisted photothermal etching under immersion in an aqueous salt solution.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Soreq NRC, Yavne 81800, Israel.
Fiber Bragg gratings (FBGs) inscribed by UV light and different femtosecond laser techniques (phase mask, point-by-point, and plane-by-plane) were exposed-in several irradiation cycles-to accumulated high doses of gamma rays (up to 124 MGy) and neutron fluence (8.7 × 10/cm) in a research-grade nuclear reactor. The FBG peak wavelengths were measured continuously in order to monitor radiation-induced shifts.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
Gallium nitride (GaN) exhibits distinctive physical and chemical properties that render it indispensable in a multitude of electronic and optoelectronic devices. Given that GaN is a typical hard and brittle material that is difficult to machine, femtosecond laser technology provides an effective and convenient tool for processing such materials. However, GaN undergoes complex physical and chemical changes during high-power ablation, which poses a challenge to high-precision processing with controllable geometry.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
The growing demand for high-speed data transfer and ultralow latency in wireless networks-on-chips (WiNoC) has spurred exploration into innovative communication paradigms. Recent advancements highlight the potential of the terahertz (THz) band, a largely untapped frequency range, for enabling ultrafast tera-bit-per-second links in chip multiprocessors. However, the ultrashort duration of THz pulses, often in the femtosecond range, makes synchronization a critical challenge, as even minor timing errors can cause significant data loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!