We report the spectroscopy and high-power continuous-wave (CW) diode-pumped laser operation of Er:Yb:YAl3(BO3) crystal. Absorption and stimulated emission spectra, emission lifetimes, and efficiency of energy transfer from Yb3+ to Er3+ ions were determined. A CW Er:Yb:YAB laser emitting at 1602, 1555, and 1531 nm with output power as high as 1W and slope efficiency up to 35% was demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.32.003233 | DOI Listing |
The stimulated Raman scattering (SRS) from the Nd:YVO gain medium is originally employed to eliminate the self-pulsing effect from the intracavity optical parametric oscillator (OPO) for achieving a continuous-wave (CW) mid-infrared output. The SRS with a second-order pump-wave power depletion is applied as the damping for the coupling between OPO pump-wave relaxation oscillation and signal-wave depletion. The SRS threshold conditions for different cavity and diode-pumped mode size designs are theoretically and experimentally explored.
View Article and Find Full Text PDFSingle-frequency (SF) lasers in the visible spectral region are usually obtained through an indirect method, i.e., frequency doubling of near-infrared SF lasers.
View Article and Find Full Text PDFEfficient diode-pumped continuous-wave (CW) and wavelength tunable Tm:YAP lasers based on the vibronic and electronic transitions are investigated. A total maximum output power of 4.1 W is achieved with multi-wavelength output around 2162 nm and 2274 nm, corresponding to a slope efficiency of 29.
View Article and Find Full Text PDFA Tm:LiYF laser operating on the H→ H transition is embedded in a high-power diode-pumped Nd:ASL laser for intracavity upconversion pumping at 1.05 µm. This leads to a record-high output power at 2.
View Article and Find Full Text PDFIn this work, we have investigated the continuous-wave (cw) lasing potential of thin slab-shaped Cr:LiCAF crystals with a low chromium doping level of around 1% and various lengths of 1 to 2 cm. These relatively long crystals with low Cr-doping facilitate the distribution of heat load in a larger volume and could enable power scaling of Cr:LiCAF lasers. However, long crystals tend to have larger passive losses, and it is also more challenging to achieve efficient mode-matching to the low-brightness pump mode in a longer gain element, which could hinder laser performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!